期刊文献+

基于机器学习的瓣膜病心房颤动射频消融术后复发预测及风险因素分析 被引量:7

Prediction and risk factors of recurrence of atrial fibrillation in patients with valvular diseases after radiofrequency ablation based on machine learning
原文传递
导出
摘要 目的 通过机器学习技术对心房颤动(房颤)射频消融术后房颤复发进行预测,并试图寻找影响术后房颤复发的风险因素。方法 纳入2017年1月—2021年1月因瓣膜病房颤在四川大学华西医院及其分院(上锦分院)进行射频消融手术的300例患者,其中男129例、女171例,平均年龄52.56岁。建立5个机器学习模型对房颤复发进行预测,将其中3个表现最好的模型组合成一个投票分类器,再次进行预测。最后使用SHApley Additive exPlanations方法进行风险因素分析。结果 投票分类器得到的预测准确率为75.0%,召回率为61.0%,受试者工作特征曲线下面积为0.79。此外,还发现左心房内径、射血分数、右心房内径等因素对术后房颤复发存在影响。结论 基于机器学习的瓣膜病房颤射频消融术后复发预测可为房颤临床诊治提供一定参考,减少因无效消融给患者带来的风险;根据研究中发现的风险因素,可为患者提供精准的治疗。 Objective To use machine learning technology to predict the recurrence of atrial fibrillation(AF) after radiofrequency ablation, and try to find the risk factors affecting postoperative recurrence. Methods A total of 300 patients with valvular AF who underwent radiofrequency ablation in West China Hospital and its branch(Shangjin Hospital) from January 2017 to January 2021 were enrolled, including 129 males and 171 females with a mean age of 52.56years. We built 5 machine learning models to predict AF recurrence, combined the 3 best performing models into a voting classifier, and made prediction again. Finally, risk factor analysis was performed using the SHApley Additive exPlanations method. Results The voting classifier yielded a prediction accuracy rate of 75.0%, a recall rate of 61.0%, and an area under the receiver operating characteristic curve of 0.79. In addition, factors such as left atrial diameter, ejection fraction,and right atrial diameter were found to have an influence on postoperative recurrence. Conclusion Machine learningbased prediction of recurrence of valvular AF after radiofrequency ablation can provide a certain reference for the clinical diagnosis of AF, and reduce the risk to patients due to ineffective ablation. According to the risk factors found in the study,it can provide patients with more personalized treatment.
作者 石桓旭 何培宇 童琪 王政捷 李涛 钱永军 赵启军 潘帆 SHI Huanxu;HE Peiyu;TONG Qi;WANG Zhengjie;LI Tao;QIAN Yongjun;ZHAO Qijun;PAN Fan(School of Electronic Information,Sichuan University,Chengdu,610065,P.R.China;Department of Cardiovascular Surgery,West China Hospital,Sichuan University,Chengdu,610041,P.R.China;School of Computer Science(School of Software),Sichuan University,Chengdu,610065,P.R.China)
出处 《中国胸心血管外科临床杂志》 CSCD 北大核心 2022年第7期840-847,共8页 Chinese Journal of Clinical Thoracic and Cardiovascular Surgery
基金 四川省干部保健科研课题(川干研2019-101) 四川省科技计划项目(2020YJ0282) 四川大学华西医院学科卓越发展1·3·5工程临床研究孵化项目(2019HXFH029) 四川省科技计划重点研发项目(2021YFS0121) 四川省卫生健康委员会医学科技项目(21PJ035)。
关键词 心房颤动 机器学习 复发预测 风险因素 Atrial fibrillation machine learning recurrence prediction risk factors
  • 相关文献

同被引文献73

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部