摘要
为研究毛细管辐射供冷墙体的表面及内部结露问题,建立了毛细管辐射墙体热湿耦合传递的三维仿真模型,通过实验验证了模型的准确性。在此基础上,对典型供水温度下毛细管辐射供冷墙体的温湿分布进行了模拟,对比分析了辐射供冷墙体与普通墙体的温湿度差异,以及不同气候区辐射供冷墙体的温湿分布及结露风险。研究结果表明,西安夏季典型设计日下,辐射供冷墙体的最低温度相比普通墙体下降了8℃左右,最高湿度比普通墙体高出20%,结露风险增大。结露风险区域集中于毛细管网嵌入区域。18℃供水温度下,西安地区及广州地区毛细管辐射供冷墙体内部及表面均未产生结露现象。墙体室外侧部分,广州地区的该区域露点温度更高,结露风险相对更大。墙体室内侧区域温湿度主要受供冷毛细管网主导,两种气候下的温湿度基本一致。
In order to study the condensation problem on the surface and inside of the capillary radiant cooling wall,a 3 D simulation model of the coupled heat and moisture transfer in the capillary radiant wall is established.The accuracy of the model is verified experimentally.On the basis of the experimental verification,the temperature and humidity distribution of the capillary radiant cooling wall under the typical water supply temperature is simulated.The temperature and humidity differences between radiant cooling walls and ordinary walls,and the temperature and humidity distribution and condensation risk of radiant cooling walls in different climate zones are compared and analyzed.The research results show that on a typical summer design day in Xi’an,the minimum temperature of the radiant cooling wall is about 8℃lower than that of the ordinary wall,and the maximum humidity is 20%higher.Increased condensation risk on radiant walls.The areas with the highest condensation risk are concentrated in the areas where the capillary network is embedded.Under the water supply temperature of 18℃,no condensation occurred on the interior and surface of the capillary radiant cooling walls in Xi’an and Guangzhou.For a part of the wall near the outdoors,the dew point temperature in Guangzhou area is higher,and the condensation risk is relatively greater.For the part of the wall close to the room,the temperature and humidity are mainly affected by the capillary network,and the temperature and humidity are similar in the two climates.
作者
杨平港
隋学敏(指导)
张展鹏
YANG Ping-gang;SUI Xue-min;ZHANG Zhan-peng(School of Civil Engineering,Chang’an University,Xi’an 710061,China)
出处
《建筑节能(中英文)》
CAS
2022年第6期8-17,共10页
Building Energy Efficiency
基金
国家自然科学基金资助项目:内嵌管式围护结构间歇供冷房间热过程及热环境响应特性与优化调控(51308049)。
关键词
毛细管辐射供冷墙体
热湿耦合
结露风险
数值模拟
实验验证
capillary radiant cooling wall
coupled heat and moisture transfer
condensation risk
numerical simulation
experimental verification