期刊文献+

基于可行方向法的水下机器人推力分配

Thrust allocation of underwater robot based on feasible direction method
下载PDF
导出
摘要 水下机器人推力分配将控制器给出的目标推力与力矩通过算法分配给各个推进器。针对水下机器人推力分配后推进器饱和问题,采用可行方向法对推力分配问题进行求解。根据推进器的空间布置情况建立通用的水下机器人推进系统数学模型。在此模型的基础上,将推力分配抽象为二次规划,利用单纯形法寻找可行的下降方向,通过一维搜索寻找最优步长。最后建立算法模型,仿真验证可行方向法和传统的伪逆法和的推力分配结果。仿真结果表明,相对传统算法,可行方向法能够更加有效地解决推力分配的饱和问题。 The thrust allocation of underwater robot allocates the target thrust and torque given by the controller to each propeller by algorithm. Aiming at the thruster saturation problem of underwater robot after thrust allocation, the feasible direction method is used to solve the thrust allocation problem. Firstly, a general mathematical model of underwater vehicle propulsion system is established according to the space arrangement of the propeller. On the basis of this model, the thrust allocation is abstracted into quadratic programming, the feasible descent direction is obtained by simplex method, and the optimal step length is acquired by one-dimensional search. Finally, the algorithm model is established to verify the thrust allocation results of feasible direction method and traditional pseudo inverse method. The simulation results show that the feasible direction method can solve the saturation problem of thrust allocation more effectively than the traditional algorithm.
作者 程卫平 王猛 曾现敏 王小丹 陈苗苗 CHENG Wei-ping;WANG Meng;ZENG Xian-min;WANG Xiao-dan;CHEN Miao-miao(School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiaotong University,Shanghai 200240,China;North China Sea Branch,Ministry of Natural Resources,Qingdao 266061,China)
出处 《舰船科学技术》 北大核心 2022年第13期102-106,共5页 Ship Science and Technology
关键词 水下机器人 推力分配 可行方向法 单纯形法 underwater robot thrust allocation feasible direction method simplex method
  • 相关文献

参考文献5

二级参考文献34

  • 1晏勇,马培荪,王道炎,高雪官.深海ROV及其作业系统综述[J].机器人,2005,27(1):82-89. 被引量:55
  • 2俞建成,张艾群,王晓辉.7000米载人潜水器推进器故障容错控制分配研究[J].机器人,2006,28(5):519-524. 被引量:20
  • 3徐玉如,肖坤.智能海洋机器人技术进展[J].自动化学报,2007,33(5):518-521. 被引量:52
  • 4俞建成,张艾群,王晓辉,苏立娟.基于模糊神经网络水下机器人直接自适应控制[J].自动化学报,2007,33(8):840-846. 被引量:36
  • 5Soylu S, Buckham B J, Podhorodeski R E A chattering- free sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation[J]. Ocean Engineering, 2008, 35(16): 1647-1659.
  • 6Akmal M, Yusoff M, Arshad M R. Active fault tolerant control of a remotely operated vehicle propulsion system[J]. Procedia Engineering, 2012, 41: 622-628.
  • 7Inoue T, Katsui T, Murakami H, et al. Preliminary research on the thruster assisted crawler system for a deep sea ROV[C]. OCEANS'09 IEEE Bremen:Balancing Technology with Future Needs. Bremen: IEEE, 2009: 1-5.
  • 8Allen B, Stokey R, Austin T, et al. REMUS: A small, low cost AUV; system description, field trials and performance results[C]. Proc of MTS/IEEE Oceans. Halifax: IEEE, 1997: 994-1000.
  • 9Prabhakar S, Buckham B. Dynamics modeling and control of a variable length remotely operated vehicle tether[C]. Proc of MTS/IEEE Oceans. Washington DC: IEEE, 2005: 1255-1262.
  • 10Tehrani N H, Heidari M, Zakeri Y, et al. Development, depth control and stability analysis of an underwater remotely operated vehicle(ROV)[C]. The 8th IEEE Int Conf on Control and Automation. Xiamen: IEEE, 2010: 814-819.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部