期刊文献+

基于扩散方程的强度不均匀图像分割

Intensity inhomogeneity image segmentation based on diffusion equation
下载PDF
导出
摘要 图像的强度不均匀性往往会导致目标边缘模糊,以致难以获得一个令人满意的图像分割结果.为获得较精确的分割结果,该文提出了一种基于扩散方程的强度不均匀图像分割模型.该模型无须设置初始轮廓,直接对图像进行类Laplace算子预处理构造初始的冷、热源,根据热传导的思想对强度严重不均匀的图像进行有效的分割.通过与多种水平集图像分割模型进行实验对比,发现文中的模型在强度不均匀图像的分割精度上基本优于其他模型;运行时间也具有明显优势.实验表明,文中方法针对强度不均匀图像的分割具有高效率、高精度、高鲁棒性的优点. The intensity inhomogeneity of the image often leads to the fuzzy edge of the target,which makes it difficult to obtain a satisfactory image segmentation result.In order to obtain more accurate segmentation results,a intensity inhomogeneity image segmentation model based on diffusion equation is proposed in this paper.This model does not need to set the initial contour,and directly constructs the initial cold and heat source by laplace-like pre-processing of the image.According to the idea of heat conduction,the image with severely intensity inhomogeneity is effectively segmented.Compared with many level set image segmentation models,it is found that the proposed model is superior to other models in the segmentation accuracy of images with intensity inhomogeneity.Uptime also has obvious advantages.Experiments show that the proposed method has the advantages of high efficiency,high accuracy and high robustness for image segmentation with intensity inhomogeneity.
作者 杨晟院 刘祥波 曾笑云 庞达 YANG Shengyuan;LIU Xiangbo;ZENG Xiaoyun;PANG Da(School of Computer Science&School of Cyberspace science, Xiangtan University, Xiangtan 411105, China;Hunan Branch of China Telecom Co.Ltd., Changsha 410000, China)
出处 《湘潭大学学报(自然科学版)》 CAS 2022年第3期28-36,共9页 Journal of Xiangtan University(Natural Science Edition)
基金 国家自然科学基金(11971411)。
关键词 扩散方程 强度不均匀图像 图像分割 水平集 diffusion equation intensity inhomogeneity image image segmentation level set
  • 相关文献

参考文献4

二级参考文献32

  • 1蒲亦非,王卫星.数字图像的分数阶微分掩模及其数值运算规则[J].自动化学报,2007,33(11):1128-1135. 被引量:70
  • 2Rada L, Chen K. A new variational model with dual level set functions for selective segmentation [ J ]. Communications in Computational Physics, 2012, 12 ( 1 ) : 261-283. [ DOI: 10. 4208/ciep. L90L L 1.2L0611 a].
  • 3Mandal D, Chatterjee A, Maitra M. Robust medical image seg- mentation using particle swarm optimization aided level set based global fitting energy active contour appruacb [ J ]. Engineering Applications of Artificial l,telligence, 2014, 35: 199-214. [ DOI : 10.1016/j. engappai. 2014.07.001 ].
  • 4Benamou J D, Carlier G, Cuturi M, et al. lterative bregman pro- jections for regularized transportation problems[ J ]. SlAM Journal on Scientific Computing, 2015, 2(37): A1111-Al138. [DOI: 10.1137/141000439 ].
  • 5Narkhede P R, Gokh',de A V. Color inmge segmentation using edge detection and seeded region growing approach for CIELab and HSV color spaces[ C ]//Proceedings of International Confer- ence on Industrial Instrumentation and Control. Pune: IEEE, 2015: 1214-1218. [DOI: 10.1109/iic. 2015.7150932].
  • 6Chan T F, Esedoglu S, Nikolova M. Algorithms for finding glob- al minimizers of image segmentation and denoising models [ J ]. SIAM Journal on applied Mathematics, 2006, 66 ( 5 ) : 1632- 1648. [ DOI: 10. 1137/040615286].
  • 7Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems [ J ]. Com- munications on Pure and Applied Mathematics, 1989, 42 (5) : 577-685. [DOI: 10. 1002/cpa. 3160420503 ].
  • 8Chan T, Vese L. An active contour model without edges[C]//Pro- ceedings of the 2nd International Conference. Berlin Heidelberg: Springer, 1999: 141-151. [DOI: 10. 1007/3-540-48236-9_13].
  • 9Chan T E, Vese L. A level set algorithm for minimizing the Mumford-Shah functional in image processing [ C ]//Proceedings of IEEE Workshop on Variational and Level Set Methods in Com- puter Vision. Vancouver, BC Canada: IEEE, 2001: 161-168. [ DOI : 10.1109/vlsm. 2001. 938895 ].
  • 10Goldstein T, Osher S. The split Bregman method for Ll-regular- ized problems [ J ]. SIAM Journal on Imaging Sciences, 2009, 2(2) : 323-343. [DOI: 10. 1137/080725891 ].

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部