摘要
考虑一类具有恐惧效应和空间异质的捕食-食饵模型.首先,利用Riesz-Schauder理论给出平凡解和半平凡解的局部渐近稳定性;其次,利用比较原理给出平凡解和半平凡解的全局吸引性;最后,利用不动点定理给出正稳态解的存在性.结果表明,恐惧效应和空间异质对模型的稳态解性质有明显影响.
We considered a predator-prey model with fear effect and spatial heterogeneity.Firstly,we gave the local asymptotic stability of trivial and semi-trivial solutions by using Riesz-Schauder theory.Secondly,we gave the global attractivity of trivial and semi-trivial solutions by using the principle of comparison.Finally,we gave the existence of a positive steady-state solution by using the fixed point theorem.The results show that fear effect and spatial heterogeneity have significant effects on the properties of steady-state solutions of the model.
作者
张萌萌
李善兵
ZHANG Mengmeng;LI Shanbing(College of Mathematics and Statistics,Xidian University,Xi’an 710126,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2022年第4期775-783,共9页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11901446)
中国博士后科学基金(批准号:2021T140530)
西安市科协青年人才托举计划项目(批准号:095320201325).