摘要
利用权函数方法,在1/p+1/q=1(0<p<1,q<0)的条件下,讨论具有非齐次核K(x,y)=G(x^(λ1)y^(λ2))(λ_(1)λ_(2)>0)的逆向Hilbert型积分不等式:∫+∞0∫+∞0K(x,y)|f(x)||g(y)|dxdy≥M‖f‖_(p,α)‖g‖_(q,β),给出其最佳搭配参数的充分必要条件,并讨论其算子表达式.
Using the power function method,we discussed the inverse Hilbert-type integral inequality∫+∞0∫+∞0K(x,y)|f(x)||g(y)|dxdy≥M‖f‖_(p,α)‖g‖_(q,β)with non-homogeneous kernel K(x,y)=G(x^(λ1)y^(λ2))(λ_(1)λ_(2)>0)under the condition that 1/p+1/q=1(0<p<1,q<0),then gave the necessary and sufficient conditions of optimal matching parameters,and discussed its operator expression.
作者
洪勇
陈强
HONY Yong;CHEN Qiang(Department of Applied Mathematics,Guangzhou Huashang College,Guangzhou 511300,China;School of Computer Science,Guangdong University of Education,Guangzhou 510303,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2022年第4期845-852,共8页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:61772140).
关键词
非齐次核
逆向Hilbert型积分不等式
最佳搭配参数
积分算子
non-homogeneous kernel
inverse Hilbert-type integral inequality
optimal matching parameter
integral operator