摘要
旅游互联网应用的快速发展,大量旅游相关评论对游客决策产生重要影响。如何减少游客搜索和筛选的时间显得尤为重要。对于景点选择来说,景区满意度是关键因素。以美团平台下游乐场主题景点为例,采集大量的评论数据,从评论中利用关键词提取技术获取景区满意度影响因素(即景区形象)进行相关度分析最终得出6个因素,再利用语义相似度方法来关联景点形象与评论数据,使用情感分析工具识别评论数据中的情感倾向,计算各景区形象的情感得分,设计基于景点满意度的排序方法,为游客提供一个可供选择的景点序列。基于景点在线评论数据的情感分析对于景点制定正确的方案以提升景点满意度具有重要的意义。实验结果显示,此基于评论的个性化景点分析方法有效。
The rapid development of tourism Internet applications,a large number of tourism-related reviews have an important impact on tourists’decision-making.How to reduce the time for tourists to search and filter is particularly important.For scenic spot selection,scenic spot satisfaction is the key factor.Taking the theme attractions of the playground under the Meituan platform as an example,a large amount of review data is collected,and the keyword extraction technology is used to obtain the factors influencing the satisfaction rate of the scenic spot(that is the image of the scenic spot)from the review.The correlation analysis finally draws 6 factors and reuses semantic similarity method to associate scenic spot image and review data,sentiment tendency of review data through sentiment analysis tool is identified,the sentiment score of each scenic spot image is calculated,a ranking method based on scenic spot satisfaction is designed,and a selectable spot sequence is available for visitors.Sentiment analysis based on the online review data of scenic spots is of great significance to formulate correct plans for scenic spots to improve the satisfaction of scenic spots.The experimental results show that this method of analyzing scenic spots is effective.
作者
凌万云
方升
张晓如
LING Wanyun;FANG Sheng;ZHANG Xiaoru(School of Computer Science,Jiangsu University of Science and Technology,Zhenjiang 212003;School of Computer Science and Communication Engineering,Jiangsu University,Zhenjiang 212013)
出处
《计算机与数字工程》
2022年第6期1312-1316,共5页
Computer & Digital Engineering
基金
国家自然科学基金项目(编号:61371114,611170165)
江苏高校高技术船舶协同创新中心/江苏科技大学海洋装备研究院项目(编号:1174871701-9)资助。
关键词
评论分析
情感分析
景点满意度
景点排序
comment analysis
sentiment analysis
scenic spot satisfaction
scenic spot ranking