期刊文献+

Porous carbon polyhedrons coupled with bimetallic CoNi alloys for frequency selective wave absorption at ultralow filler loading 被引量:5

原文传递
导出
摘要 Combining suitable microstructure and dielectric-magnetic synergy effect is conducive to achieve lightweight,broadband,and high-efficiency microwave absorbing materials within low filler loading.Herein,porous carbon polyhedrons coupled with bimetallic CoNi alloys were synthesized by using metalorganic frameworks(MOFs)as a template and subsequent pyrolysis treatment.Electromagnetic analysis indicated that the existence of metal Ni element could influence the wave attenuation capacity effectively,resulting in frequency selective wave absorption performance.Additionally,the pyrolysis temperature was also closely related to wave absorption intensity.The Co_(2)Ni_(1)/C/PVDF composites calcined at 800℃ possessed outstanding wave absorption performance at an ultra-low filler loading of 5 wt%.The minimum reflection loss value achieved-52 dB(10.8 GHz)under the matched thickness of 3 mm.Moreover,the broadest effective absorption bandwidth(RL<-10 dB)reached 6.2 dB(11.8-18 GHz)for Co/C-800/PVDF composites when the thickness turned into 2 mm.The remarkable wave attenuation ability was mainly ascribed to magnetic and dielectric loss,impedance matching as well as porous structure effect.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第8期34-41,共8页 材料科学技术(英文版)
基金 supported by the National Natural Science Foundation of China(No.52073010) Beijing Natural Science Foundation(2214069)。
  • 相关文献

同被引文献47

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部