期刊文献+

Terminal sulfur atoms formation via defect engineering strategy to promote the conversion of lithium polysulfides 被引量:2

原文传递
导出
摘要 The defect engineering shows great potential in boosting the conversion of lithium polysulfides intermediates for high energy density lithium-sulfur batteries(LSBs),yet the catalytic mechanisms remain unclear.Herein,the oxygen-defective Li_(4)Ti_(5)O_(12)-xhollow microspheres uniformly encapsulated by N-doped carbon layer(OD-LTO@NC)is delicately designed as an intrinsically polar inorganic sulfur host for the research on the catalytic mechanism.Theoretical simulations have demonstrated that the existence of oxygen deficiencies enhances the adsorption capability of spinel Li_(4)Ti_(5)O_(12)towards soluble lithium polysulfides.Some-S-S-bonds of the Li2S6on the defective Li_(4)Ti_(5)O_(12)surface are fractured by the strong adsorption force,which allows the inert bridging sulfur atoms to be converted into the susceptible terminal sulfur atoms,and reduces the activation energy of the polysulfide conversion in some degree.In addition,with the N-doped carbon layer,secondary hollow microspheres architecture built with primary ultrathin nanosheets provide a large amount of void space and active sites for sulfur storage,adsorption and conversion.The as-designed sulfur host exhibits a remarkable rate capability of 547 m Ah g^(-1)at 4C(1 C=1675 m A g^(-1))and an outstanding long-term cyclability(519 m Ah g^(-1)after 1000 cycles at 3 C).Besides,a high specific capacity of 832 m Ah g^(-1)is delivered even after 100 cycles under a high sulfur mass loading of 3.2 mg cm^(-2),indicating its superior electrochemical performances.This work not only provides a strong proof for the application of oxygen defect in the adsorption and catalytic conversion of lithium polysulfides,but offers a promising avenue to achieve high performance LSBs with the material design concept of incorporating oxygen-deficient spinel structure with hierarchical hollow frameworks.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第8期221-231,共11页 材料科学技术(英文版)
基金 supported by the National Natural Science Foundation of China(21805157,51972187) Natural Science Foundation of Shandong Province(ZR2019MEM043,ZR2019MB037) Shandong Provincial Key Research and Development Program(2019GGX103034) Development Program in Science and Technology of Qingdao(19-6-2-12-cg)。
  • 相关文献

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部