期刊文献+

Ag_(24)Au cluster decorated mesoporous Co_(3)O_(4)for highly selective and efficient photothermal CO_(2)hydrogenation 被引量:1

原文传递
导出
摘要 Photothermal carbon dioxide hydrogenation represents a promising route to reduce the emission of greenhouse gas CO_(2)and produce value-added chemicals,but the selectivity and stability of photothermal catalysts need to be improved.Herein,we report the rational fabrication of well-defined Ag_(24)Au cluster decorated highly ordered nanorod-like mesoporous Co_(3)O_(4)(Ag_(24)Au/mesoCo_(3)O_(4))for highly efficient and selective CO_(2)hydrogenation.The orderly assembled meso-Co_(3)O_(4)nanorods were prepared via a nanocasting method,offering large surface area and abundant active sites for CO_(2)adsorption and conversion.Moreover,the catalytic activity and selectivity were further improved by molecule-like Ag_(24)Au cluster decoration and reaction temperature optimization.The Ag_(24)Au/meso-Co_(3)O_(4)composite catalyst exhibited an ultrahigh CH_(4)yield rate of 204 mmol·g^(−1)·h^(−1)and a greatly improved CH_(4)selectivity of 82%for CO_(2)hydrogenation,significantly higher than those of pristine meso-Co_(3)O_(4)catalyst.The mechanism of the photothermal catalytic performance improvement was verified by CO_(2)temperature-programmed desorption and time-resolved transient photoluminescence,revealing that CO_(2)molecules underwent a vigorous adsorption and rapid activation process over Ag_(24)Au/meso-Co_(3)O_(4).The hot electrons created by the localized surface plasmon resonance effect of Ag_(24)Au clusters facilitated the charge transfer for subsequent multi-electron CO_(2)hydrogeneration processes,resulting in a significant increase in the productivity and selectivity for CO_(2)-to-CH_(4)conversion.This work suggests that the rational coupling of well-defined metal atom clusters and ordered transition metal compound nanostructures could open a new avenue towards photoinduced green chemistry processes for efficient CO_(2)recycling and reutilization.
出处 《Nano Research》 SCIE EI CSCD 2022年第6期4965-4972,共8页 纳米研究(英文版)
基金 supports from the National Key Research&Development Program of China(No.2017YFA0208200) the National Natural Science Foundation of China(Nos.22022505 and 21872069) the Fundamental Research Funds for the Central Universities(No.0205-14380266) the 2021 Suzhou Gusu Leading Talents of Science and Technology Innovation and Entrepreneurship in Wujiang District.
  • 相关文献

参考文献1

二级参考文献3

共引文献3

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部