摘要
Detached Arabidopsis thaliana leaves can regenerate adventitious roots,providing a platformfor studying de novo root regeneration(DNRR).However,the comprehensive transcriptional framework of DNRR remains elusive.Here,we provide a high-resolution landscape of transcriptome reprogramming from wound response to root organogenesis in DNRR and show key factors involved in DNRR.Time-lapse RNA sequencing(RNA-seq)of the entire leaf within 12 h of leaf detachment revealed rapid activation of jasmonate,ethylene,and reactive oxygen species(ROS)pathways in response towounding.Genetic analyses confirmed that ethylene andROSmay serve as wound signals to promoteDNRR.Next,time-lapse RNA-seq within 5 d of leaf detachment revealed the activation of genes involved in organogenesis,wound-induced regeneration,and resource allocation in the wounded region of detached leaves during adventitious rooting.Genetic studies showed that BLADE-ON-PETIOLE1/2,which control aboveground organs,PLETHORA3/5/7,which control root organogenesis,and ETHYLENE RESPONSE FACTOR115,which controlswound-induced regeneration,are involved in DNRR.Furthermore,single-cell RNA-seq data revealed gene expression patterns in thewounded region of detached leaves during adventitious rooting.Overall,our study not only provides transcriptome tools but also reveals key factors involved in DNRR from detached Arabidopsis leaves.
基金
supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences(grant no.XDB27030103)
the National Natural Science Foundation of China(32000175/31770285/32070397)
the Youth Innovation Promotion Association CAS(2014241)
the Chinese Academy of Sciences.A portion of this research was supported by a Global Research Collaboration Grant from the Offices of Research and Global Engagement to L.Y.from the University of Georgia and National Science Foundation under Grant NO.IOS2039313 to L.Y.