摘要
Interface wettability is a vital role in directly impacting the electrical contact characteristics of oxides/Cubased composites under arc erosion.Exploring its influence mechanism,especially at atomic/electronic scales,is significant but challenging for the rational design of oxides/Cu contacts.Here,we designed Zn_(2)SnO_(4)/Cu electrical contacts aiming to solve the poor wettability of SnO_(2)/Cu composites.It was found that Zn_(2)SnO_(4)could remarkably improve the arc resistance of Cu-based electrical contacts,which was benefited by the excellent interface wettability of Zn_(2)SnO_(4)/Cu.The characterization of eroded surface indicated that Zn_(2)SnO_(4)particles distributed uniformly on the contact surface,leading to stable electrical contact characteristic.Nevertheless,SnO_(2)considerably deteriorated the arc resistance of SnO_(2)/Cu composite by agglomerating on the surface.The effect mechanism of wettability on arc resistance was investigated through density function theory(DFT)study.It revealed that strong polar covalent bonds across the Zn_(2)SnO_(4)/Cu interface contributed to improving the interfacial adhesion strength/wettability and thus significantly enhanced the arc resistance.For binary SnO_(2)/Cu interface,ionic bonds resulted in weak interface adhesion,giving rise to deterioration of electrical contact characteristic.This work discloses the bonding mechanism of oxide/Cu interfaces and paves an avenue for the rational design of ternary oxide/Cu-based electrical contact materials.
基金
financially supported by the National Natural Science Foundation of China(Nos.51877048 and 11875046)。