期刊文献+

Defect-induced insulator-metal transition and negative permittivity in La_(1-x)Ba_(x)CoO_(3)perovskite structure 被引量:3

原文传递
导出
摘要 The development of negative permittivity materials in multifunctional applications requests expansion of their operating frequency and improvement of stability of negative permittivity.Low electron density is beneficial to reduce plasma frequency so that negative permittivity is achieved in kHz region.Negative permittivity achieved by percolating composites is restricted in practicality due to its instability nature at high temperatures.To achieve temperature-stable negative permittivity in kHz region,monophase La_(1-x)Ba_(x)CoO_(3)ceramics were prepared,and the transition from dielectric to metal was elaborated in the perspective of electrical conductivity and negative permittivity.The plasma-like negative permittivity is attained in kHz region,which is interpreted by the collective oscillation of low electron density.The temperature-stable negative permittivity is based on the fact that the plasmonic state will not be undermined at high temperatures.In addition,zero-crossing behavior of real permittivity is observed in La_(0.9)Ba_(0.1)CoO_(3)sample,which provides a promising alternative to designing epsilon-near-zero materials.This work makes the La_(1-x)Ba_(x)CoO_(3)system a source material for achieving effective negative permittivity.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第17期77-84,共8页 材料科学技术(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.51771104,51871146,51971119) the Natural Science Foundation of Shandong Province(No.ZR2020YQ32) the Innovation Program of Shanghai Municipal Education Commission(No.2019-01-07-00-10-E00053)。
  • 相关文献

参考文献1

二级参考文献23

  • 1R. Von. Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Phys. Rev. Lett. 71 (1993) 2331-2333.
  • 2S. Jin, T.H. Tiefel, M. Mc Cormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Science 264 (1994) 413-415.
  • 3P. Schiffer, A.P. Ramirez, W. Bao, S.w. Cheong, Phys. Rev. Lett. 75 (1995) 3336-3339.
  • 4Y. Lu, X.w. Li, G.Q. Gong, G. Xiao, A. Gupta, P. Lecoeur, J.Z. Sun, Y.Y. Wang, vr. Dravid, Phys. Rev. B 54 (1996) R8357-R8360.
  • 5K. Dorr, J. Phys. 0 Appl. Phys. 39 (2006) RI2S-RISO.
  • 6S.P.P. Parkin, Annu. Rev. Mater. Sci. 25 (1995) 357-388.
  • 7A.M. Haghiri-Gosnet, J.P. Renard, J. Phys. 0 Appl. Phys. 36 (2003) RI27-RI50.
  • 8Y. Xu, U. Memmert, U. Hartmann, Sensor Actuat 91 (2001) 26-29.
  • 9J.H. Markna, R.N. Parmar, D.G. Kuberkar, Ravi Kumar, D.S. Rana, S.K. Malik, Appl. Phys. Lett. 88 (2006) 152503.
  • 10I.H. Markna, P.S. Vachhani, R.N. Parmar, D.G. Kuberkar, P. Misra, B.N. Singh, L.M. Kukreja, D.S. Rana, S.K. Malik, Europhys. Lett. 79 (2007) 17005.

同被引文献17

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部