期刊文献+

基于机器视觉的工业机器人分拣研究全控制 被引量:2

Research on Industrial Robot Sorting Control Based on Machine Vision
下载PDF
导出
摘要 采用Matlab相机对仪器进行校准,并安装OpenCV相机对库进行校准,并建立双目工业相机模型。利用BM空间匹配算法获得的图像的立体校正,得到了物体的视差。根据相机成像原理,从相机坐标系中的物体获得的三维云对信息进行滤波和分割,并建立点特征评价功能,验证不同区域的特征点,得到稳定可靠的空间位置评价点。 Use matlab camera to calibrate the instrument,install OpenCV camera to calibrate the library,and establish binocular camera model.Using the stereo correction of the image obtained by BM spatial matching algorithm,the parallax of the object is obtained.According to the principle of camera imaging,the point cloud information is filtered and segmented from the three-dimensional cloud obtained from the object in the camera coordinate system,and the point feature evaluation function is established to verify the feature points in different regions and obtain stable and reliable spatial position evaluation points.
作者 周迪 Zhou Di(Nanjing Dizhihai Information Technology Co.,Ltd.,Nanjing 210033,China;Fang Rong(Xiamen)Technology Co.,Ltd.,Xiamen 361008,China)
出处 《科学技术创新》 2022年第24期153-156,共4页 Scientific and Technological Innovation
关键词 双目工业相机 MATLAB 滤波 Binocular industrial camera Matlab Wave filtering
  • 相关文献

参考文献9

二级参考文献66

  • 1张丹,段锦,顾玲嘉,景文博.基于图像的模拟相机标定方法的研究[J].红外与激光工程,2007,36(z1):561-565. 被引量:18
  • 2Paolini R, Rodriguez A, Srinivasa S S, Mason M T. A data-driven statistical framework for post-grasp manipulation. The International Journal of Robotics Research, 2014, 33(4):600-615.
  • 3Droniou A, Ivaldi S, Sigaud O. Deep unsupervised network for multimodal perception, representation and classification. Robotics and Autonomous Systems, 2015, 71(9):83-98.
  • 4Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786):504-507.
  • 5Bengio Y. Learning deep architectures for AI. Foundations and TrendsoledR in Machine Learning, 2009, 2(1):1-127.
  • 6L?ngkvist M, Karlsson L, Loutfi A. A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Letters, 2014, 42:11-24.
  • 7Erhan D, Bengio Y, Courville A, Manzagol P A, Vincent P, Bengio S. Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research, 2010, 11:625-660.
  • 8Salakhutdinov R, Hinton G. Deep Boltzmann machines. In:Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS) 2009. Florid, USA, 2009. 448-455.
  • 9Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng A Y. Multimodal deep learning. In:Proceedings of the 28th International Conference on Machine Learning. Bellevue, USA, 2011. 689-696.
  • 10Baldi P, Lu Z Q. Complex-valued autoencoders. Neural Networks, 2012, 33:136-147.

共引文献150

同被引文献25

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部