期刊文献+

基于旅客异质性画像的公铁联程出行方案推荐方法 被引量:6

Road-rail intermodal travel recommendations based on a passenger heterogeneity profile
原文传递
导出
摘要 公铁联程是我国重要的城际出行交通方式之一,但基于单一因素排序的城际票务出行方案推荐方法无法满足公铁联程旅客的个性化出行需求。为提升出行效率,该文基于旅客历史出行订单数据构建画像数据库,使用TF-IDF(term frequency-inverse document frequency)、K-means算法探究旅客异质性衍生的公铁联程出行需求差异,依据偏好得分、敏感特性设置奖励函数,使用Q-learning强化学习算法构建基于旅客异质性画像的公铁联程出行方案推荐方法。以天津-泗洪作为典型的特大城市-小城市公铁联程出行路线,与传统的城际出行方案推荐方法对比,为3类不同敏感特性的旅客推荐公铁联程出行方案。结果表明:该文推荐的公铁联程出行方案能够缩短20%的行程耗时,降低32%的行程费用,在契合旅客行为偏好和敏感特性、满足个性化出行需求方面均有较好的表现。 Road-rail intermodal travel is one of the important intercity travel modes. However, an intercity travel recommendation method based on single factor ranking cannot satisfy the personalized travel demands of road-rail intermodal passengers. This study improves travel efficiency by using a profile database based on passenger historical ticketing data with the term frequency-inverse document frequency(TP-IDF) and K-means algorithms to explore the road-rail intermodal travel demand differences derived from the passenger heterogeneity. The model uses reward functions based on preference scores and sensitivity characteristics with the Q-learning reinforcement learning algorithm in a road-rail intermodal travel recommendation method based on the passenger heterogeneity profile. The method is applied to the Tianjin-Sihong route as a typical road-rail intermodal travel route from a megacity to small cities with road-rail intermodal travel schemes recommended for three types of passengers with different sensitivities. The results show that the recommended travel schemes shorten travel times by 20% and reduce travel costs by 32% while effectively meeting passenger behavior preferences, sensitivity characteristics and personal demands.
作者 杨敏 李宏伟 任怡凤 张聪伟 YANG Min;LI Hongwei;REN Yifeng;ZHANG Congwei(School of Transportation,Southeast University,Nanjing 210096,China)
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第7期1220-1227,共8页 Journal of Tsinghua University(Science and Technology)
基金 国家重点研发计划项目(2018YFB1601300) 国家自然科学基金资助项目(52072066) 江苏省杰出青年基金资助项目(BK20200014)。
关键词 公铁联程 异质性 Q-learning算法 出行推荐方法 road-rail intermodal travel heterogeneity Q-learning algorithm travel recommendations
  • 相关文献

参考文献4

二级参考文献31

  • 1关宏志,王鑫,王雪.停车需求预测方法研究[J].北京工业大学学报,2006,32(7):600-604. 被引量:64
  • 2刘伟铭,李蓉.ETC系统缴费方式随机选择模型[J].中国公路学报,2006,19(5):77-82. 被引量:15
  • 3陈团生,毛保华,高利平,岳芳.客运专线旅客出行选择行为分析[J].铁道学报,2007,29(3):8-12. 被引量:14
  • 4Adomavicius G,Tuzhilin A.Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-art and Possible Extensions[J].IEEE Transactions on Knowledge and Data Engineering.2005,17(6):734-749.
  • 5Venturini A,Ricci F.Applying Trip@dvice Recommendation Technology to www.visiteurope.com[C]//Proc.of the 17th European Conference on Artificial Intelligence.Amsterdam,Holland: IOS Press,2006: 607-611.
  • 6Bridge D,Goker M,McGinty L,et al.Case-based Recommender Systems[J].The Knowledge Engineering Review.2006,20(3):315-320.
  • 7Mahmood T,Ricci F.Learning and Adaptive in Interactive Recommender Systems[C]//Proc.of ICEC’07.New York,USA: ACM Press: [s.n.],2007: 75-84.
  • 8Mahmood T,Ricci F.Towards Learning User-adaptive State Models in a Conversational Recommender System[C]//Proc.of the 15th Workshop on Adaptivity and User Modeling in Interactive Systems.Halle,Germany: Martin Luther University Press,2007: 373-378.
  • 9Dongen B F V,de Medeiros A K A,Verbeek H M W,et al.The Prom Framework: A New ERA in Process Mining Tool Support[C]//Proc.of Conference on Application and Theory of Petri Nets.Berlin,Germany: Springer-Verlag,2005: 444-454.
  • 10JANIC M.True Multimodalism for Mitigating Airport Congestion:Substitution of Air Passenger Transport by High-speed Rail[J].Transportation Research Record,2010(2177):78-87.

共引文献307

同被引文献31

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部