摘要
以湖北巴东光伏电站实采数据为基础,分析了温度、辐照度、系统出力3类原始数据特征及变化特点,以融合准确率和召回率的综合指标为评价依据,提出采集数据的在线清洗与修复方法,最后以电站实采数据为例,进行数据清洗与修复的可行性验证。结果表明:根据趋势距离对变化趋势统一的温度数据进行清洗、通过设置动态阈值区间对辐照数据进行分时刻清洗,以及对独立分析困难但适宜联合分析的出力-辐照数据进行匹配度核算和清洗,均可较好地实现离群数据的筛选识别;此外,对残缺数据,根据相应清洗指标最小化原则,进行数据修复,可较好地再现缺失点的数据原貌。
Based on the actual data collected in Hubei Badong photovoltaic power station,the characteristics and variation feature of three kinds of raw data,such as temperature,radiation and system output,are analyzed.Based on the comprehensive index of accuracy and recall rate,the on-line cleaning and repairing method of the corresponding data is proposed.Finally,the feasibility of data cleaning and repairing is validated by taking the actual data collected from power stations as an example.The results show that the temperature data with uniform variation trend can be cleaned according to the trend distance,the irradiation data can be cleaned in time by setting dynamic threshold interval.By Calculating and cleaning the matching degree of output-irradiation data,which is difficult to analyze independently but suitable for joint analysis,the outlier data can be screened and identified.In addition,the original data of missing points can be better reproduced by data repairing according to the principle of minimizing the corresponding cleaning index.
作者
汪海宁
陈昱明
樊涛
谢祥颖
马大燕
Wang Haining;Chen Yuming;Fan Tao;Xie Xiangying;Ma Dayan(Engineering Research Center of Ministry of Education for Photovoltaic System,Hefei University of Technology,Hefei 230009,China;State Grid Co.,Ltd.,Beijing 100031,China;State Grid e-Commerce Co.,Ltd.(State Grid Financial Technology Group),Beijing 100053,China)
出处
《太阳能学报》
EI
CAS
CSCD
北大核心
2022年第6期57-65,共9页
Acta Energiae Solaris Sinica
基金
国家重点研发计划(2018YFB1500800)
国家电网有限公司科技项目(SGTJDK00DYJS2000148)
中央科研基本业务费支持项目(PA2020GDGP0053)。
关键词
光伏系统
数据筛选
数据修复
数据联合匹配度
photovoltaic system
data filtering
data recovery
data union matching degree