摘要
有效的信用风险预警可以降低电商商务活动中的风险,促进电子商务的发展。以极限学习机为基分类器的集成模型适用于电子商务企业信用数据样本少,维度高的特点;通过对少数类样本过采样缓解类别不平衡问题,进一步提高模型预测准确率。实证分析表明,基于类别平衡校正的集成极限学习机能够对企业风险预警等级作出有效的预测,且结果优于现有的基于传统机器学习算法及对应的集成模型,对提升电子商务风险预警效果有积极作用。
Effective credit risk warning can reduce the risk in the process of e-commerce business and promote the development of e-commerce. The ensemble model with an extreme learning machine as the base classifier, suitable for e-commerce enterprises with few samples and high dimensionality of credit data, further improves the prediction accuracy of the model by alleviating the class imbalance problem by oversampling a few class samples. The empirical analysis shows that the ensemble extreme learning machine based on class balance correction can make effective predictions of enterprise risk warning levels, with the results better than the existing traditional machine learning algorithms and corresponding ensemble models, and improve the effect of e-commerce risk warning.
作者
陈艳
叶翀
蒋伟杰
CHEN Yan;YE Chong;JIANG Wei-jie
出处
《闽南师范大学学报(哲学社会科学版)》
2022年第2期16-23,共8页
Journal of Minnan Normal University:Philosophy and Social Sciences
基金
国家社科基金一般项目(19FJYB043)
福建省中青年教师教育科研项目(JAS180840)。
关键词
电子商务
极限学习机
集成模型
类别平衡校正
信用风险预警
E-commerce
extreme learning machine
ensemble model
class balance calibration
early warning of credit risk