期刊文献+

基于深度学习的实时车牌检测与识别 被引量:3

Real‑time license plate detection and recognition based on deep learning
下载PDF
导出
摘要 深度学习已被广泛应用于车牌识别领域,但受限于光照条件对识别精度的影响,在夜间场景下的识别精度不高,且需要外界灯光的辅助。针对该问题,通过在数据预处理阶段引入随机暗化处理的手段,在原数据集的基础上模拟夜间效果,扩大样本数量,使得最终模型具有更好的光照鲁棒性。此外,因网络层数的不断增加,现有算法的识别速度很难满足实时识别,且对硬件性能提出了较高的要求。为在保证精度的同时有效提升算法的识别速度,通过构建二级级联定位网络Tiny-MTCNN(Tiny-Multi task convolutional neural network),结合关键点的初步区域提取和精确回归定位,减少网络层数。最终在测试环节,算法的平均识别精度达到96.5%,而在夜间场景下的精度显著提升至96.1%(提高2.7%)。另一方面,由于网络结构的优化,在精度略有损失(平均下降0.6%)的代价下,算法的识别速度显著提升了44.67%。 Deep learning has been widely used in the field of license plate recognition.However,recognitions in night scenes always depend on assistance of external lights.In order to solve this problem,this paper introduces a data preprocessing method named random darkening.This preprocessing method improves the size of the set by simulating night scenes on the original data set,and it brings the model a better lighting robustness.In addition,due to the increasing number of layers,the speed of existing algorithms is difficult to meet the requirements of real-time recognition.Therefore,a higher requirement for hardware performance is put forward.In order to improve the speed of the algorithm while ensuring its accuracy,this paper constructs a two-level cascaded positioning network Tiny-MTCNN(Tiny-Multi Task Convolutional Neural Network),which combines preliminary region extraction and precises regression positioning of key points.During the test,the average recognition accuracy of the algorithm reaches 96.5%,and the accuracy in the night scene is significantly improved to 96.1%(an increase of 2.7%).On the other hand,due to the optimization of network structure,the algorithm's recognition speed is significantly increased by 44.67%at the cost of a slight loss of accuracy(an average decrease of 0.6%).
作者 孙世昕 马蕾 李千目 张伟斌 SUN Shixin;MA Lei;LI Qianmu;ZHANG Weibin(School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;School of Public Affairs,Nanjing University of Science and Technology,Nanjing 210094,China;School of Computer Science and Engineering,Nanjing University of Sci-ence and Technology,Nanjing 210094,China)
出处 《现代交通与冶金材料》 CAS 2022年第4期61-67,共7页 Modern Transportation and Metallurgical Materials
基金 国家自然科学基金资助项目(71971116)。
关键词 车牌识别 深度学习 随机暗化处理 端到端网络 license plate recognition deep learning random darkening end-to-end networking
  • 相关文献

参考文献9

二级参考文献35

  • 1王珂,杨芳,姜杉.光学字符识别综述[J].计算机应用研究,2020,37(S02):22-24. 被引量:27
  • 2应宏微,姚明海,张永华.基于纹理分析和垂直投影的车牌定位算法[J].控制工程,2004,11(5):432-435. 被引量:13
  • 3杨海涛,常义林,王静,霍俊彦.一种基于亮度直方图的自动曝光控制方法[J].光学学报,2007,27(5):841-847. 被引量:47
  • 4徐培风.基于图像处理的自动调焦和自动曝光算法研究[硕士学位论文].镇江:江苏大学,2005.
  • 5Gu Q, A1 Noman A, Aoyama T, et al. A fast color tracking system with automatic exposure control. 2013 IEEE International Conference on Information and Automation (ICIA). IEEE. Yinchuan, China. 2013. 1302-1307.
  • 6Vuong QK, Yun SH, Kim S. A new auto exposure and autowhite-balance algorithm to detect high dynamic range conditions using CMOS technology. Lecture Notes in Engineering and Computer Science, 2008, 21731 (1).
  • 7Shimizu S, Kondo T, Kohashi T, Tsuruta M. A new algorithm for exposure control based on fuzzy logic for video cameras. IEEE Trans. on Consumer Electronics, 1992, 38(3): 617-623.
  • 8Yang WR, Shiao YS, Su DT, et al. Design and implementation of fuzzy controllers for auto focus, auto exposure and zoom tracking. Tamkang Journal of Science and Engineering, 2008, 11(3): 305-312.
  • 9Rahman TM. Real-Time Face-Priority Auto-Focus And Adaptive Auto-Exposure For Digital And Cell-Phone Cameras [Thesis]. The University of Texas at Dallas, 2011.
  • 10Tao J, Kuhnert KD, Duong N, Kuhnert L. Multiple templates auto exposure control based on luminance histogram for on-board camera. Proc. 2011 IEEE International Conference on Computer Science and Automation Engineering(CSAE). 2011, 3,237-241.

共引文献57

同被引文献33

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部