期刊文献+

Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance 被引量:1

原文传递
导出
摘要 Electromagnetic-wave absorbing(EMA)materials that have efficient absorption performances,great me-chanical properties and chemical stability are rare and yet essential for communication security and pro-tection.Herein,flaky interstitial-carbon-doped FeCoNiCu high entropy alloys(HEAs)as novel EMA ma-terials were successfully prepared by high-energy ball-milling method.Interstitial-carbon doping as a modulating approach impacted the phase forming,morphology and electromagnetic properties of Fe-CoNiCu HEAs.Impedance matching was significantly optimized via tuning interstitial carbon contents.The carbon-doped FeCoNiCu HEAs with appropriate carbon contents delivered superior EMA performance compared with other HEAs EMA materials.Strong reflection loss as low as-61.1 dB in the Ku band,broad effective absorption bandwidth of 5.1 GHz was achieved for FeCoNiCuC_(0.04).Moreover,the carbon-doped FeCoNiCu HEAs exhibited excellent mechanical hardness and chemical stability.This work not only suggests that interstitial-carbon doping is an available approach to tuning electromagnetic properties of HEAs,but also presents carbon-doped FeCoNiCu HEAs as promising EMA materials for civilian and mili-tary due to the efficient absorption,broad bandwidth,great durability and stability.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第18期61-70,共10页 材料科学技术(英文版)
基金 financially supported by the Natural Science Foundation of China (No. 51701098) the Natural Science Foundation of Ningbo Municipality (No. 2019A610064) sponsored by K. C. Wong Magna Foundation in Ningbo University
  • 相关文献

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部