摘要
本文分析了福建省平潭近海海域2013—2019年水文、水质及气象数据的主成分结果,筛选出5个气象因子和4个水质因子作为输入指标,以藻密度为输出指标,分别演算了KNN(K-nearest neighbor)、RF(random forest)、GBRT(gradient-boosted regression Trees)以及Bagging(bootstrap aggregating)4种赤潮预警回归模型。对2013—2019年的802组海洋监测数据归一化处理后,随机选取80%的数据作为模型的训练样本,剩余的20%作为模型验证数据。其中,以风速、气温、海平面气压、叶绿素a浓度组合为输入指标时,KNN回归模型演算结果的精度较高(R^(2)=0.624,RMSE=0.821μg·L^(-1),MAE=0.836μg·L^(-1))。在没有叶绿素a浓度监测指标的海域,构建了以叶绿素a浓度为输出指标,气温、日照、风速、AOI(apparent oxygen increase)组合为输入指标的BP神经网络赤潮模型,该模型也具有较好的预警精度(R^(2)=0.651,RMSE=0.062μg·L^(–1),MAE=0.033μg·L^(-1))。本研究结果可为平潭海域的赤潮预警研究提供参考。
We analyzed the principal components of hydrology,water quality,and meteorological data in Pingtan,Fujian province from 2013 to 2019.We selected 5 meteorological factors and 4 water quality factors.Our study establishes four early-warning model,KNN(K-nearest neighbor),RF(random forest),GBRT(gradient-boosted regression trees),Bagging(bootstrap aggregating)with meteorological factors and water quality factors as input indicators,and algal cell density as output indicators.After normalizing the 802 sets of marine monitoring data from 2013 to 2019,80%of the data were randomly selected as the model training samples,and the remaining 20%were used as data of model verification.When temperature,wind speed,sea level pressure,and chlorophyll a are used as input parameters,the calculation result of KNN regression modelis more accurate(R^(2)=0.624,RMSE=0.821μg·L^(–1),MAE=0.836μg·L^(–1)).In the sea area without chlorophyll a monitoring index,a BP neural network early-warning model with chlorophyll a concentration as the output index and temperature,sunshine,wind speed and AOI as input parameters was established,which has better warning accuracy(R^(2)=0.651,RMSE=0.062μg·L^(–1),MAE=0.033μg·L^(–1)).Our results can provide a reference for the red tide early warning research in the Pingtan coastal area.
作者
苏金洙
邹嘉澍
苏玉萍
张明峰
翁蓁洲
杨小强
SU Jinzhu;ZOU Jiashu;SU Yuping;ZHANG Mingfeng;WENG Zhenzhou;Yang Xiaoqiang(Environmental Science and Engineering College,Fujian Normal University,Fuzhou 350007,China;Fujian Province Research Centre for River and Lake Health Assessment,Fuzhou 350007,China;Geographical Sciences College,Fujian Normal University,Fuzhou 350007,China;Marine and Fisheries Technology Centre,Fuzhou 350007,China)
出处
《热带海洋学报》
CAS
CSCD
北大核心
2022年第4期172-180,共9页
Journal of Tropical Oceanography
基金
国家重点研发计划项目(2016YFE0202100)
福建省高校产学合作项目(SC-292、21NB000922)。
关键词
叶绿素A浓度
藻类密度
赤潮
预警模型
平潭海域
chlorophyll a concentration
algal cell density
red tide
early-warning model
Pingtan coastal area