期刊文献+

Impact of different nano additives on performance, combustion, emissions and exergetic analysis of a diesel engine using waste cooking oil biodiesel

原文传递
导出
摘要 Biodiesel is derived from waste cooking oil (WCO) by transesterification. Methylester was prepared by mixing diesel and biodiesel oils as 20% by volume. Nano particles asTiO2, Al2O3 and CNTs were blended with biodiesel blend at different concentrations of 25,50, and 100 mg/l to enhance the physicochemical fuel characteristics to obtain clean and effi-cient combustion performance. An experimental setup was incorporated into a diesel engine toinvestigate the influence of these nano-materials on engine performance, exergy analysis, combustion characteristics and emissions using WCO biodiesel-diesel mixture. Enriching methylester mixture with 100 ppm titanium, alumina and CNTs (B20T100, B20A100 andB20C100) increased the thermal efficiency by 4%, 6% and 11.5%, respectively compared toB20. Biodiesel blending with nano additives B20T100, B20A100 and B20C100 decreasedthe emissions of CO (11%, 24% and 30%, respectively), HC (8%, 17% and 25%, respectively)and smoke (10%, 13% and 19%, respectively) compared to B20. However, the noticeable increase of NOx was estimated by 5%, 12% and 27% for B20T100, B20A100 and B20C100,respectively. Finally, the results showed the rise in peak cylinder pressure by 5%, 9% and 11% and increase in heat release rate by 4%, 8% and 13% for B20T100, B20A100 andB20C100, respectively. The fuel exergy of B20T100, B20A100 and B20C100 are lower thanbiodiesel blend B20 by 6.5%, 16% and 23% but the exergetic efficiency are increased by 7%,19% and 30% at full load about B20.
出处 《Propulsion and Power Research》 SCIE 2022年第2期209-223,共15页 推进与动力(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部