期刊文献+

具有边界反馈的波方程系统解的能量衰减估计

Energy decay estimates for the solution to a wave equation system with boundary feedback
下载PDF
导出
摘要 研究有界区域上一类波方程的能量衰减性.在适当的几何假设下,首先给出系统解的正则性,然后利用乘子法证明了该波方程是最优能量衰减的,得到了局部能量衰减的显式估计. The energy decay of a class of wave equations in a bounded domain is studied.Under suitable geometric assumptions,the regularity of the system solution is given,and then the optimal energy decay of the wave equation is proved by using the multiplier method.Finally,the explicit estimates of the local energy decay is obtained.
作者 白忠玉 陈娜娜 BAI Zhong-yu;CHEN Na-na(Faculty of Network Science,Haikou University of Economics,Haikou 571127,Hainan,China)
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2022年第4期39-44,共6页 Journal of Northwest Normal University(Natural Science)
基金 海南省自然科学基金资助项目(120RC663)。
关键词 波方程 乘子法 能量衰减估计 边界反馈 wave equation multiplier method energy decay estimate boundary feedback
  • 相关文献

参考文献2

二级参考文献11

  • 1冯绍继,冯德兴.Boundary stabilization of wave equations with variable coefficients[J].Science China Mathematics,2001,44(3):345-350. 被引量:5
  • 2Aubin, J. P., Un theoreme de compacite, C. R. Acad. Sci., 256(1963), 5042-5044.
  • 3Bardos, C., Lebeau, G. & Ranch, J., Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Cont. Optim., 30(1992), 1024-1065.
  • 4Conrad, F. & Rao, B., Decay of solutions of wave equation in a star-shaped domain with nonlinear boundary feedback, Asymptotic Analysis, 7(1993), 159-177.
  • 5Komornik, V., Exact controllability and stabilization, Research in Applied Mathematics, P. G. Ciarlet and J. Lions (eds.), Masson/John Wiley Copublication, 1994.
  • 6Komornik, V., On the nonlinear boundary stabilization of the wave equation, Chin. Ann. Math.,14B:2(1993), 153-164.
  • 7Komornik, V. & Zuazua, E., A direct method for the boundary stabilization of the wave equation, J.Math. Pures Appl., 69(1990), 33-54.
  • 8Lasiecka, I. & Tataru, D., Uniform boundary stabilization of semilinear wave equation with nonlinear boundary condition, Diff. Int. Eqs., 6(1993), 507-533.
  • 9Wu, H., Shen, L. L. & Yu, Y. L., Introduction to Riemannian geometry (in Chinese), Beijing University Press, Beijing, 1989.
  • 10Yao, P. F., On the observability inequality for exact controllability of wave equations with variable coefficients, SIAM J. Cont. Optim., 37(1999), 1568-1599.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部