期刊文献+

Glucose and MMP-9 dual-responsive hydrogel with temperature sensitive self-adaptive shape and controlled drug release accelerates diabetic wound healing 被引量:15

原文传递
导出
摘要 Chronic diabetic wounds are an important healthcare challenge. High concentration glucose, high level of matrix metalloproteinase-9 (MMP-9), and long-term inflammation constitute the special wound environment of diabetic wounds. Tissue necrosis aggravates the formation of irregular wounds. All the above factors hinder the healing of chronic diabetic wounds. To solve these issues, a glucose and MMP-9 dual-response temperature-sensitive shape self-adaptive hydrogel (CBP/GMs@Cel&INS) was designed and constructed with polyvinyl alcohol (PVA) and chitosan grafted with phenylboric acid (CS-BA) by encapsulating insulin (INS) and gelatin microspheres con-taining celecoxib (GMs@Cel). Temperature-sensitive self-adaptive CBP/GMs@Cel&INS provides a new way to balance the fluid-like mobility (self-adapt to deep wounds quickly, approximately 37 ◦C) and solid-like elasticity (protect wounds against external forces, approximately 25 ◦C) of self-adaptive hydrogels, while simultaneously releasing insulin and celecoxib on-demand in the environment of high-level glucose and MMP-9. Moreover, CBP/ GMs@Cel&INS exhibits remodeling and self-healing properties, enhanced adhesion strength (39.65 ± 6.58 kPa), down-regulates MMP-9, and promotes cell proliferation, migration, and glucose consumption. In diabetic full-thickness skin defect models, CBP/GMs@Cel&INS significantly alleviates inflammation and regulates the local high-level glucose and MMP-9 in the wounds, and promotes wound healing effectively through the synergistic effect of temperature-sensitive shape-adaptive character and the dual-responsive system.
出处 《Bioactive Materials》 SCIE 2022年第11期1-17,共17页 生物活性材料(英文)
基金 This work was supported by the National key Research and devel-opment program of China(2019YFA0905200) the National Natural Science Foundation of China(21878247,21808184) Key Program of the National Natural Science Foundation of China(21838009).
  • 相关文献

参考文献3

二级参考文献3

共引文献22

同被引文献125

引证文献15

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部