期刊文献+

Improved mechanical, degradation, and biological performances of Zn–Fe alloys as bioresorbable implants 被引量:4

原文传递
导出
摘要 Zinc(Zn)is a promising bioresorbable implant material with more moderate degradation rate compared to magnesium(Mg)and iron(Fe).However,the low mechanical strength and localized degradation behavior of pure Zn limit its clinical applications.Alloying is one of the most effective ways to overcome these limitations.After screening the alloying element candidates regarding their potentials for improvement on the degradation and biocompatibility,we proposed Fe as the alloying element for Zn,and investigated the in vitro and in vivo performances of these alloys in both subcutaneous and femoral tissues.Results showed that the uniformly distributed secondary phase in Zn–Fe alloys significantly improved the mechanical property and facilitated uniform degradation,which thus enhanced their biocompatibility,especially the Zn-0.4Fe alloy.Moreover,these Zn–Fe alloys showed outstanding antibacterial property.Taken together,Zn–Fe alloys could be promising can-didates as bioresorbable medical implants for various cardiovascular,wound closure,and orthopedic applications.
出处 《Bioactive Materials》 SCIE 2022年第11期334-343,共10页 生物活性材料(英文)
基金 This work was supported by the National Institutes of Health[R01HL140562].
  • 相关文献

二级参考文献3

共引文献13

同被引文献34

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部