期刊文献+

基于局部注意力和位姿迭代优化的自监督单目深度估计算法 被引量:3

A Self-supervised Monocular Depth Estimation Algorithm Based on Local Attention and Iterative Pose Refinement
下载PDF
导出
摘要 自监督单目深度估计在自动驾驶、智能制造等领域有着广泛的应用。然而由于自监督训练存在大量训练噪声,其估计精度受到了极大限制。针对自监督单目深度估计算法中深度估计精度有限的问题,本文提出了一种基于局部注意力机制和迭代调优的自监督单目深度估计框架。首先,对于深度估计网络,基于局部像素间深度值的高度相关性,本文设计了一种局部注意力机制来融合高分辨率特征图的局部特征,提升深度估计的准确性;其次,对于位姿估计网络,本文设计了一种迭代调优的位姿估计结构,利用残差优化的方式降低位姿估计难度,提升位姿估计的准确性进而提升深度估计网络的性能。实验表明,本文提出的改进自监督单目深度估计算法有效提升了深度估计的精度。 Self-supervised monocular depth estimation is widely used in many areas,such as autonomous driving and intelligent manufacturing. However,due to the large amount of training noise in self-supervised training,the accuracy of self-supervised monocular depth estimation is limited. To improve the performance of self-supervised monocular depth estimation algorithm,we proposed a modified self-supervised monocular depth estimation algorithm based on local attention mechanism and iterative pose refinement. First,for the depth estimation network,we proposed a local attention mechanism,which is based on the high correlation between the depth of pixels in a local patch,to fuse features of highresolution feature map. Second,for the pose estimation network,we proposed an iterative refinement based architecture,which decreases the pose estimation difficulty with residual optimization and improves the pose estimation accuracy to benefit the depth estimation network. Experiments shown that,the proposed modified self-supervised monocular depth estimation algorithm significantly improves the depth estimation accuracy.
作者 赵霖 赵滟 靳捷 ZHAO Lin;ZHAO Yan;JIN Jie(China Aerospace Academy of Systems Science and Engineering,Beijing 100048,China)
出处 《信号处理》 CSCD 北大核心 2022年第5期1088-1097,共10页 Journal of Signal Processing
基金 装备发展部快速转化项目(8091C21)。
关键词 单目深度估计 自监督学习 深度学习 monocular depth estimation self-supervised learning deep learning
  • 相关文献

参考文献1

二级参考文献20

  • 1Dalai N, Triggs B. Histograms of oriented gradients fi~r hu- man detection [ C 1//Computer Vision and Pattern Rec.<~li- tion, 2005 IEEE Conference on. IEEE 2005 : 886-893.
  • 2Felzenszwalb P, McAllester D, Ramanan D. A discrimina- tively trained, muhiscale, deformable part model ~ C ] // C~mlputer Vision and Pattern Recognition, ;2008. CVPR2008. IEEE Conference on. IEEE, 2008: 1-8.
  • 3(;'all J, LempitskyV. Class-specilic hough forests for object detection[ C ]//Computer Vision and Pattern Recognition, 2009 IEEE Conference on. IEEE, 2009: 1022-1029.
  • 4S('hulter S, l,eistner C, ~'ohlhart P, el al. Accurate Ob- ject Detection with Joint Classification-Regression Ran- dom Forests[ C] S/Computer Vision and Pattern Ree~gni- tion. IEEE, 2014: 923-930.
  • 5Xia L, Chen C C, Aggarwal J K. Human detection using depth inf()rmation by kinect [ C ]//Computer Visinn and Pattern Recognition Workshops (CVPRW), 2011 IEEE Conference on. IEEE, 2011 : 15-22.
  • 6Tang S, Wang X, Lv X, et al. Histogram of oriented norn'.al vectors for object recognition with a depth sensor[ C]//Asi- an Conference on Computer Vision, 2013: 525-538.
  • 7Oreifej O, Liu Z. Hon4d: Histogram of oriented 4(t nor- mals for activity recognition fi'om depth sequences [ C ]// Computer Vision and Pattern Recognition, 2013 IEEE Conference on. IEEE, 2013: 716-723.
  • 8Gupta S, Girshick R, Arl)el~iez P, et al. l,earning rich fea- tures from RGB-D images for object detection and segmen- tation [ C ] //European Conference oll Computer Vision 2014. Springer International Publishing, 2014: 345-360.
  • 9Alexe B, Deselaers T, [ C] //Computer Vision IEEE Conference on. IE Hongwen Kang, Hebert, Driven Objectness[ J ]. P telligence, 2015, 37(1.
  • 10Uijlings J R R. van de Ferrari V. What is an o[).iect? and Pattern Recognition, 2010 EE, 2010: 73-80.

共引文献9

同被引文献18

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部