期刊文献+

基于多标签学习的旋转机械分级复合故障诊断 被引量:2

Hierarchical compound fault diagnosis of rotating machinery based on multi-label learning
原文传递
导出
摘要 传统故障诊断方法大多是针对单一故障类型,然而在实际工业中多种故障会同时出现,即复合故障.针对复合故障诊断问题,一些学者引入多标签学习思想,多标签K近邻算法(ML-KNN)就是其中之一.然而ML-KNN算法作为一阶算法,只考虑标签与对应样本数据间的关系,却忽略了标签间的联系.针对该问题提出一种分级多标签学习算法,名为分层多标签K近邻算法(HML-KNN).HML-KNN算法将机械设备的退化阶段和故障类型分为两级,将第1级得到的标签信息进行转化,转化后的信息作为新特征放入第2级进行判断.HML-KNN算法是一种高阶算法,考虑了全局的标签信息,并在算法中包含了标签的特征转化,使得到的结果准确率更高.最后通过XJTU-SY数据集验证HML-KNN算法在处理复合故障诊断问题上的优越性. Traditional fault diagnosis methods are mostly for a single fault type at one time,but in the actual industry,many kinds of faults will occur at the same time,that is compound fault.For the problem of compound fault diagnosis,some scholars have introduced the method of multi-label learning,and the multi-label K-nearest neighbor(ML-KNN)algorithm is one of them.However,as a first-order algorithm,the ML-KNN algorithm only considers the relationship between the label and the corresponding sample data,but ignores the relationship between the labels.In this study,a hierarchical multi-label learning algorithm is proposed,named hierachical multi-label K-nearest neighbor(HML-KNN).The HML-KNN algorithm categorizes the degradation state as the first level and fault type of machinery as the second level.The first level label information is transformed,and the transformed information is put into the second level as new features for judgment.The HML-KNN algorithm is a high-level algorithm that takes into account the global label information,and includes the feature conversion of the label,which makes the result more accurate.Through the verification on the XJTU-SY bearing data set,the superiority of the HML-KNN algorithm in dealing with compound fault diagnosis is demonstrated.
作者 马鑫 陈庆 柴榕敏 崔明亮 王友清 MA Xin;CHEN Qing;CHAI Rong-min;CUI Ming-liang;WANG You-qing(College of Information Science and Technology,Beijing University of Chemical Technology,Beijing 100029,China;College of Electrical and Automation,Shandong University of Science and Technology,Qingdao 266590,China)
出处 《控制与决策》 EI CSCD 北大核心 2022年第7期1772-1778,共7页 Control and Decision
基金 国家自然科学基金项目(61822308) 山东省自然科学基金项目(JQ201812) 青岛市创业创新领军人才计划项目(19-3-2-4-zhc).
关键词 多标签学习 ML-KNN 复合故障 故障诊断 分级处理 相似性搜索 multi-label learning ML-KNN compound fault fault diagnosis hierarchical processing similarity search
  • 相关文献

参考文献5

二级参考文献28

  • 1雷亚国,何正嘉,訾艳阳,胡桥.基于特征评估和神经网络的机械故障诊断模型[J].西安交通大学学报,2006,40(5):558-562. 被引量:39
  • 2胡桥,何正嘉,张周锁,訾艳阳,雷亚国.基于提升小波包变换和集成支持矢量机的早期故障智能诊断[J].机械工程学报,2006,42(8):16-22. 被引量:44
  • 3HUANG N E, SHEN Z, LONG S R, et al. The Empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].Proceedings of the Royal Society of London, 1998, 454(1): 903-995.
  • 4YANG B S, HAN T, AN J L. ART-KOHONEN neural network for fault diagnosis of rotating machinery [J]. Mechanical Systems and Signal Processing, 2004, 18.. 645-657.
  • 5YANG B S, KIM K J. Application of Dempster-Shafer theory in fault diagnosis of induction motors using vibration and current signals [J]. Mechanical Systems and Signal Processing, 2006, 20:403-420.
  • 6KITTLER J, HATEF M, DUIN R P W, et al. On combining classifiers [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(3): 226-239.
  • 7FRED A L N, JAIN A K. Combining multiple clusterings using evidence accumulation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 835-850.
  • 8NANNI L. Comparison among feature extraction methods for HIV-1 protease cleavage site prediction [J]. Pattern Recognition, 2006, 39:711-713.
  • 9TOYGAR O, ACAN A. Multiple classifier implementation of a divide-and-conquer approach using appearance- based statistical methods for face recognition [J]. Pattern Recognition Letters, 2004, 25:1 421-1 430.
  • 10MASHAO D J, SKOSAN M. Combining classifier decisions for robust speaker identification [J]. Pattern Recognition, 2006, 39: 147-155.

共引文献147

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部