期刊文献+

钪钇共稳二氧化锆热障涂层结构设计与热冲击失效行为研究 被引量:2

Structural Design and Thermal Shock Failure Behavior of Scandium and Yttrium Co-stabilized Zirconia Thermal Barrier Coatings
下载PDF
导出
摘要 热障涂层的微观结构是影响其使役性能的关键因素。研究了亚微米及纳米“双模式”结构钪钇共稳二氧化锆(Sc YSZ)热障涂层的微观结构与高温热冲击行为。结果表明,亚微米结构Sc YSZ涂层在1300℃的火焰热冲击寿命为286次,而纳米未熔颗粒/层状组织“双模式”结构可以显著提高涂层的热冲击寿命,其热冲击寿命达到376次。亚微米结构涂层致密性较高,热冲击过程中容易发生高温烧结导致贯穿涂层厚度方向的纵向裂纹产生,而纳米“双模式”结构涂层中的纵向裂纹遇到疏松的纳米未熔颗粒因应力释放而终止,其失效模式主要表现为未熔颗粒的点状剥落。 Microstructure of the thermal barrier coatings is a key factor affecting its service performance. The microstructure and thermal shock behavior of scandium yttrium co-stabilized zirconia(ScYSZ) thermal barrier coatings with sub-micron and nano-sized bimodal structures were investigated. The results show that the thermal shock life of the ScYSZ coating with sub-micron structure is 286 times at 1300 ℃. While the bimodal-structured coating with nano-sized unmelted particles/layered structure can significantly improve the thermal shock life of the coating, which reaches 376 times. The microstructure of sub-micron coating is relatively dense, and the vertical cracks through the coating thickness are easily to generate during the high-temperature thermal shock test. However, the propagation of vertical cracks in the nano-coating are terminated by the stress release encountering the loose nano-unmelted particles. The main failure mode of the nano-coating is the spot spallation.
作者 范薇 白宇 王玉 雷丽军 张翼 FAN Wei;BAI Yu;WANG Yu;LEI Lijun;ZHANG Yi(School of Energy and Power Engineering,North University of China,Taiyuan 030051,China;State Key Laboratory for Mechanical Behavior of Materials,Xi'an Jiaotong University,Xi'an 710049,China)
出处 《热加工工艺》 北大核心 2022年第10期69-73,78,共6页 Hot Working Technology
基金 国家科技重大专项资助项目(2019-VII-0007-0147) 国家自然科学基金资助项目(52005388)。
关键词 热障涂层 热冲击性能 微观形貌 失效模式 thermal barrier coatings thermal shock performance microstructure failure mode
  • 相关文献

参考文献6

二级参考文献87

  • 1韩志海,王海军,徐滨士,刘明.超音速等离子喷涂制备梯度功能热障涂层的特点[J].有色金属(冶炼部分),2006(z1):51-56. 被引量:6
  • 2冼文锋,张红松,王富耻,李淑华,马壮.等离子喷涂ZrO_2热障涂层的抗热震性能[J].材料保护,2007,40(4):4-6. 被引量:2
  • 3Matsumoto K, Itoh Y, Kameda T, EB-PVD Process and Thermal Properties of Hafnia-Based Thermal Barrier Coating [ J ]. Science and Technology of Advanced Materials, 2003(4) : 153 - 158.
  • 4Miller R A, Current Status of Thermal Barrier Coatings-an Overview[J]. SurCoat Technol, 1987, 30:1-11.
  • 5Miller R A, Thermal Barrier Coatings for Aircraft Engines : History and Directions[J]. J Thermal Spray Tech, 1997(6) : 35 -42.
  • 6Cao X Q, Vassen R, Stoever D, Ceramic Materials for Thermal Barrier Coatings [ J ]. Journal of the European Ceramic Society, 2004, 24: 1-10.
  • 7Goward G W. Protective Coating Systems for High-Temperature Gas Turbine Components[J~. Mat Sci Tech, 1986(2) : 194 -200.
  • 8Hecht R J, Goward G W, Elam R C. High Temperature NiCoCrAlY Coatings: United States, Patent No. 3928026[ P], 1975.
  • 9Zhu D M, Miller R A, Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings [ R ]. Ohio : Ohio Aerospace Institute, Brook Park, Ohio, 2002.
  • 10Zhu D M, Miller R A. Development of Advanced Low Conductivity Thermal Barrier Coatings [ J ]. International Journal of Applied Ceramic Technology, 2004 ( 1 ) : 86 - 94.

共引文献200

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部