期刊文献+

一种新型双射流双喉道控制矢量喷管的数值模拟

Numerical simulation of a novel dual-injection dual-throat vectoring nozzle
下载PDF
导出
摘要 双喉道控制矢量喷管具有良好的推力矢量性能。为了进一步提高双喉道控制矢量喷管的性能,提出一种双射流双喉道矢量喷管的设计概念。在喷管的第二喉道处上壁面增加一个射流通道,给主流提供径向速度的同时也降低推力损失,既能增大推力矢量角,又能获得较大的推力系数。对该喷管二次射流设计参数进行数值模拟,结果表明:二次射流流量比、入射角度都会对喷管的内部流态造成直接影响,从而影响推力矢量角、推力系数。由此方法得出的最佳推力矢量性能为:最佳推力矢量角为16.5°时,相对应的推力系数为96.7%。 Dual-throat vectoring nozzle has a good vectoring performance.In order to further improve the performance of the dual-throat vectoring nozzle,a design concept of dual-injection dual-throat vectoring nozzle was proposed.An injection was added to upper wall of the second throat to provide the radial velocity while reducing thrust loss,which could not only increase the thrust vector angle but also obtain a larger thrust.Design parameters of the secondary injection of the nozzle were numerically simulated.The results show that,flow rate and incident angle of the secondary injection directly affected internal flow pattern of the nozzle,thereby affecting thrust vector angle and thrust coefficient.The best thrust vector performance obtained by this method in this paper was that the thrust vector angle of 16.5°and the corresponding thrust ratio of 96.7%.
作者 王建明 刘晓东 夏瑄泽 张钲浩 王成军 WANG Jian-ming;LIU Xiao-dong;XIA Xuan-ze;ZHANG Zheng-hao;WANG Cheng-jun(College of Aeroengine,Shenyang Aerospace University,Shenyang 110136,China;Liaoning Key Lab of Advanced Test Technology for Aero Propulsion System,Shenyang Aerospace University,Shenyang 110136,China)
出处 《沈阳航空航天大学学报》 2022年第3期19-26,共8页 Journal of Shenyang Aerospace University
基金 国家自然科学基金(项目编号:51476106)。
关键词 矢量喷管 双喉道控制矢量喷管 矢量增强 二次射流 气动特性 vectoring nozzle dual-throat vectoring nozzle vector-enhanced secondary injection aerodynamic performance
  • 相关文献

参考文献9

二级参考文献74

  • 1Kowai H J. Advances in thrust vectoring and the application of flow-control technology[J]. Canadian Aeronautics and Space Journal, 2002,48(2) : 145 -151.
  • 2Waithe K A, Deere K A. Experimental and computational investigation of multiple injection ports in a convergent di vergent nozzle for fluidic thrust vectoring [ R]. AIAA- 2003-3802,2003.
  • 3Miller D N,Yagle P J, Hamstra J W. Fluidic throat skewing for thrust vectoring in fixed-geometry nozzles[R]. AIAA 99 0365,1999.
  • 4Williams R G, Vittal B R. Fluidic thrust vectoring and throat control exhaust nozzle[R]. AIAA-2002-4060,2002.
  • 5Deere K A, Berrier B L, Flamm J D, et al. Computational study of fluidic thrust vectoring using separation control in a nozzle[R]. AIAA 2003-3803,2003.
  • 6Deere K A, Berrier B L, Flamm J D. A computational study of a new dual-throat fluidic thrust vectoring nozzle concept [R]. AIAA 2005-3502,2005.
  • 7Flamm J D, Deere K A. Experimental study of a dualthroat fluidic thrust-vectoring nozzle concept [R]. AIAA- 2005-3503,2005.
  • 8Flamm J D. Experimental study of a nozzle using fluidic counterflow for thrust vectoring[R]. AIAA-98-3255,1998.
  • 9Lim C M,Kim H D,Setoguchi T. Studies on thrust vector control using a fluidic counter-flow concept [R]. AIAA 2006-5204,2006.
  • 10Jimenez A. Thrust vectoring foe advanced fighter aircraft, propulsion package. AIAA 2001-3991,2001.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部