期刊文献+

Sacrificial template synthesis of(V_(0.8)Ti_(0.1)Cr_(0.1))_(2)AlC and carbon fiber@(V_(0.8)Ti_(0.1)Cr_(0.1))_(2)AlC microrods for efficient microwave absorption 被引量:1

原文传递
导出
摘要 The morphology of MAX phase powders significantly influences their microwave absorption properties.However,the traditional synthesis via solid-state reactions produces irregular powders,and the preparation of MAX phase powders with specific morphology remains a challenge.Herein,(VTiCr)Al C MAX phase microrods were fabricated for the first time in NaCl/KCl molten salts using vanadium,titanium,chromium,aluminum,and short carbon fibers as precursors.It was found that despite acting as a carbon source,carbon fibers also acted as sacrificial templates.By adjusting the molar ratio of metal powders and short carbon fibers,a series of carbon fiber@(V_(0.8)Ti_(0.1)Cr_(0.1))_(2)AlC microrods with core-sheath structure were also obtained.Carbon fiber@(V_(0.8)Ti_(0.1)Cr_(0.1))_(2)AlC microrods with a molar ratio of 8:2 showed the optimum microwave absorption performance.The reflection loss(RL)value reached up to–63.26 d B at 2.40 mm,and the effective absorption bandwidth(EAB)was about 5.28 GHz with a thickness of2.02 mm.Based on the electromagnetic parameter analysis and theoretical simulation,the enhanced microwave absorption performance was attributed to the synergistic effect of different factors like dielectric loss,magnetic loss,multiple reflection,and scattering.This work offers a facile route to modulate the morphology of MAX phase powders and may accelerate its application as microwave absorbers.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第16期236-244,共9页 材料科学技术(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.51602184) Natural Science Foundation of Shaanxi Province(Grant no.2020JM-505) the Academic Talent Introduction Program of SUST(134080056)。
  • 相关文献

同被引文献20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部