期刊文献+

以PET/CT为基础预测早期宫颈癌淋巴结转移的列线图 被引量:2

Nomogram for predicting lymph node metastasis in the early stage cervical cancer based on PET/CT
下载PDF
导出
摘要 目的:构建一个以氟代脱氧葡萄糖正电子发射计算机断层显像(18F FDG PET/CT)为基础的预测早期宫颈癌淋巴结转移风险的模型。方法:回顾分析2019年1月至2020年7月145例早期宫颈癌患者手术前1个月内的PET/CT检查记录,并以此为基础构建了一个预测淋巴结转移风险的列线图。并选取2020年10月至2021年5月90例宫颈癌患者作为验证队列评估列线图的实用性。结果:最终确定2个因素鳞状上皮细胞癌抗原(SCCA),淋巴结最大标准摄取值(nSUVmax)作为列线图的预测因子。原始队列中的受试者操作特征曲线下面积(AUC-ROC)为0.886,验证队列中为0.872。校准曲线显示预测结果:与实际结果:之间具有极好的一致性。结论:本研究建立并验证了一个简单有效的列线图,可用于术前预测早期宫颈癌患者的淋巴结转移。 Objective:To construct a model based on 2-deoxy-2-fluorodeoxyglucose positron emission tomography/computed tomography(18F FDG PET/CT)to predict the risk of lymph node metastasis in the early stage cervical cancer.Methods:From January 2019 to July 2020,the records of 145 patients with early stage cervical cancer who had undergone PET/CT examination within 30 days before surgery were retrospectively reviewed.A nomogram to predict the risk of lymph node metastasis was constructed based on it.And this study used 90 cervical cancer patients from October 2020 to May 2021 as a validation cohort to evaluate the utility of the nomogram.Results:Two factors(SCCA,nSUVmax)were finally identified as predictors of the nomogram.Meanwhile,the area under the receiver operating characteristic curve(AUC-ROC)was 0.886 in the primary cohort and 0.872 in the validation cohort.The calibration curve shown excellent agreement between predicted probability and actual results.Conclusions:We established and verified a simple and effective nomogram for predicting the lymph node metastasis of early stage cervical cancer before surgery.
作者 杨诗敏 李春波 华克勤 Yang Shimin;Li Chunbo;Hua Keqin(Department of Gynecology,Obstetrics and Gynecology Hospital,Fudan University,Shanghai 200090)
出处 《现代妇产科进展》 CSCD 北大核心 2022年第7期526-529,共4页 Progress in Obstetrics and Gynecology
关键词 宫颈癌 列线图 淋巴结转移 PET/CT Cervical cancer Nomogram Lymph node metastasis PET/CT
  • 相关文献

同被引文献12

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部