期刊文献+

基于改进LBP的纹理特征提取算法

Texture Feature Extraction Algorithm Based on Improved LBP
下载PDF
导出
摘要 LBP纹理特征提取算法在提取纹理特征时,存在鲁棒性较差、对噪声较敏感等问题。针对前述问题,文章提出一种(ILNRBP)改进的局部抗噪鲁棒性二值模式。对于一个给定的中心像素,首先计算中心像素灰度值与邻域像素点周围的四个邻域像素点灰度均值之间的差值,然后将该差值与阈值T之间的差异二值量化得到ILNRBP二进制串,最后根据所有像素的ILNRBP直方图得到该幅图像的特征直方图。 LBP texture feature extraction algorithm has the problems of poor robustness and sensitiveness to noise when extracting texture features.Considering the above problems,an Improved Local Noise Robustness Binary Pattern (ILNRBP) is proposed.For a given center pixel,firstly,the difference value between the central pixel gray degree value and the pixel gray degree mean of the four neighborhood pixels around the neighborhood pixels is calculated.Then the difference between the difference value and threshold T is quantized to obtain the ILNRBP binary string.Finally,the characteristic histogram of the image is obtained from ILNRBP histogram according to the all pixels.
作者 张云锦 ZHANG Yunjin(China Helicopter Research and Development Institute,Jingdezhen 333000,China)
出处 《现代信息科技》 2022年第7期77-79,84,共4页 Modern Information Technology
关键词 局部二值模式 纹理特征提取 纹理分类 Local Binary Pattern(LBP) texture feature extraction texture classification
  • 相关文献

参考文献2

二级参考文献119

  • 1Ojala T, Pietikinen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimi- nation of distributions [ C ] // Proceedings of the 12th Interna- tional IAPR Conference on Pattern Recognition. Jerusalem, Pal- estine: IEEE Computer Society, 1994, 1:582-585.
  • 2Pietikinen M, Ojala T, Nisula J, et al. Experiments with two in- dustrial problems using texture classification based on feature dis- tributions [ C ] //Proceedings of SPIE 2354, Intelligent Robots and Computer Vision XIII: 3D Vision, Product Inspection, and Active Vision. Boston, MA: IEEE Computer Society, 1994-, 2354 : 197-204.
  • 3Ojala T, Pietikinen M, Menp T. Multiresolution gray scale and rotation invariant texture classification with local binary patterns [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24 (7) : 971-987.
  • 4Ojala T, Pietikinen M, Menp T. Gray scale and rotation invari- ant texture classification with local binary patterns [ C ] // Pro- ceedings of IEEE European Conference on Computer Vision, Lecture Notes in Computer Science. Berlin Heidelberg: Spring- er, 2000, 1842: 404-420.
  • 5Pietikinen M, Nurmela T, Menp T, .et al. View-based recogni- tion of real-world textures [ J ]. Pattern Recognition, 2004, 37(2) : 313-323.
  • 6Ojala T, Pietikinen M, Harwood D. A comparative study of tex- ture measures with classification based on feature distributions [J]. Pattern Recognition, 1996, 29(1): 51-59.
  • 7Li S Z, Jain A K. Handbook of Face Recognition [ M]. Berlin, Germany: Springer-Verlag, 2004.
  • 8Ahonen T, Hadid A, Pietikinen M. Face description with local binary patterns: application to face recognition [ J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006, 28(12) : 2037-2041.
  • 9Pietikinen M, Ojala T, Xu Z. Rotation-invariant texture classifi- cation using feature distributions [ J ]. Pattern Recognition, 2000, 33(1) : 43-52.
  • 10Gong P, Marcean D J, Howarth P J. A comparison of spatial fea- ture extraction algorithms for land-use classification with SPOT HRV data [ J ]. Remote Sensing of Environment, 1992, 40 : 137-151.

共引文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部