期刊文献+

C_(3)-和C_(4)-临界连通图的结构 被引量:1

Structure of C_(3)-and C_(4)-Critical Graphs
下载PDF
导出
摘要 设G是连通图,如果G中每一个阶至多为m的完全子图都包含在一个最小点割内,则称G是C_(m)-临界图。Mader证明C_(3)-临界图是6连通图的,Pastor证明C_(3)-临界极小6-连通图G中由6度点导出的子图G 6的每一个分支都有一个圈。本文运用断片方法证明C_(3)-临界极小6-连通图中每一个点与至少2个6度点相邻,由此可以推出Pastor的结论。进一步,本文证明了C_(4)-临界连通图是7-连通的。 A connected graph is said to be C m-critical if every complete subgraph with order no more than m of G is contained in a smallest separating set.Mader shows that C_(3)-critical graph is 6-connected.Pastor shows that every component of G_(6),induced by the set of vertices of degree 6 of a minimally C_(3)-critical graph,has a cycle.By using some insight on properties of fragment,it is shown that every vertex of minimally C_(3)-critical graph adjacent to at least two vertices of degree 6,which implies the result of Pastor.Further,it is shown that every C_(4)-critical connected graph is 7-connected.
作者 覃城阜 莫芬梅 QIN Chengfu;MO Fenmei(College of Mathematics and Statistics,Nanning Normal University,Nanning Guangxi 530001,China)
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2022年第4期145-153,共9页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(11961051) 广西自然科学基金(2018GXNSFAA050117)。
关键词 C_(m)-临界 局部结构 连通度 断片 C_(m)-critical local structure connectivity fragment
  • 相关文献

参考文献5

二级参考文献36

  • 1袁旭东,苏健基.6连通图中的可收缩边(英文)[J].数学进展,2004,33(4):441-446. 被引量:4
  • 2袁旭东.5连通图的可收缩边[J].广西师范大学学报(自然科学版),1994,12(3):30-32. 被引量:3
  • 3赵巧凤,覃城阜,袁旭东,李敏.收缩临界6连通图中的6度顶点(英文)[J].广西师范大学学报(自然科学版),2005,23(2):38-43. 被引量:2
  • 4齐恩凤,袁旭东.收缩临界6连通图中的6度顶点[J].广西科学,2006,13(2):85-89. 被引量:1
  • 5Kriesell M.A degree sum condition for the existence of a contractible edge in a k-connected graph[J].J Combin Theory Ser B,2001,82:81-101.
  • 6Ando K,Kaneko A,Kawarabayashi K.Vertices of degree 6 in a contraction critically 6-connected graph[J].Discrete Math,2003,273:55-69.
  • 7Bondy J A,Murty U S R.Graph theory with applications[M].New York:MacMillan,1976.
  • 8Mader W.Generalizations of critical connectivity of graphs[J].Discrete Math,1988,72:267-283.
  • 9Thomassen C,Toft B.Non-separating induced cycles in praphs[J].J Combin Theory Ser B,1981,31:199-224.
  • 10Kriesell M.A survey on contractible edge in graphs of a prescrible vertex connectivity[J].Graphs and Combin,2002,18:1-30.

共引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部