期刊文献+

解决集合论悖论的模态方法研究

A Modal Solution to the Paradoxes of Set Theory
原文传递
导出
摘要 ZFC集合论等经典的集合论悖论解决方案,一般是通过限制康托尔不受限概括原则中的给定性质的“任意性”来解悖的。但是弗莱茨等人认为,除了这一路径外,还可以通过限制元素满足给定性质的方式的“任意性”来解决集合论悖论,并建议利用模态算子刻画元素满足给定性质的“特殊方式”。弗莱茨等人给出的这种模态解悖方法本质上是一种修正康托尔不受限概括原则的新方法。 Classical set theories such as ZFC solve the paradoxes of set theory by restricting the“arbitrariness”of the properties given in Cantor’s unrestricted comprehension principle. But Fritz et al. think that,instead of restricting the properties,we can also restrict the ways in which the elements satisfy a given property. Fritz et al. propose making use of a modal operator to formalize “a special way”,so that the set is formed by collecting those elements that satisfy the given property in a special way. In essence,the modal solution presented by Fritz et al. is a new method to modify Cantor’s unrestricted comprehension principle.
作者 袁旭亮 李娜 Yuan Xuliang;Li Na
出处 《世界哲学》 CSSCI 北大核心 2022年第4期134-141,F0003,共9页 World Philosophy
基金 辽宁省社会科学规划基金青年项目“直觉主义学派解悖思想研究”(项目编号:L20CZX002) 南开大学文科发展基金“逻辑定理机器证明系统”(项目编号:63212061) 中央高校基本科研业务费专项资金资助“模态集合论研究”[项目编号:DUT20RC(3)067]的阶段性成果。
  • 相关文献

参考文献2

二级参考文献3

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部