期刊文献+

无限水深下波浪与二维水面物体作用的简单格林函数方法 被引量:1

A BEM WITH SIMPLE GREEN’S FUNCTION FOR WAVE INTERACTION WITH A 2D BODY AT THE SURFACE OF INFINITE WATER
下载PDF
导出
摘要 针对无限水深下波浪与二维水面物体相互作用问题,传统的波浪格林函数形式复杂、计算缓慢,为了提高计算效率和计算精度,将流域分为物体周围的内域及远离物体的外域,内域采用简单格林函数法,外域采用多极子展开方法,通过内外域边界匹配,耦合求解得到流域中任意一点的速度势,并可计算物体在波浪作用下的波浪激振力、附加质量、辐射阻尼及透射和反射系数。应用该方法计算了二维水面漂浮半圆和水面漂浮方箱的算例,数值计算结果表明,该方法可以方便、准确、快速地计算无限水深下波浪与任意漂浮物体的作用问题。 To understand the interaction of waves with a two-dimensional surface body in infinite water depth,the traditional wave Green’s function has complex form and slow calculation.In order to improve the calculation efficiency and accuracy,the watershed was divided into inner domain around the object and outer domain far away from the object.Simple Green’s function method was adopted in the inner domain,and multi-pole expansion method was adopted in the outer domain.The velocity potential of any point in the watershed can be obtained through coupling solution by matching inner and outer domain boundaries.The wave excitation force,additional mass,radiation damping and transmission and reflection coefficients of the object under wave action can also be calculated.The method was applied to calculate two-dimensional water surface floating semicircle and water surface floating square box,and the numerical results show that the method can conveniently,accurately and quickly calculate the interaction between waves and arbitrary floating objects in infinite water depth.
作者 滕斌 于梅 TENG Bin;YU Mei(Dalian University of Technology,State Key Laboratory of Coastal and Offshore Engineering,Dalian 116024,China)
出处 《海洋与湖沼》 CAS CSCD 北大核心 2022年第4期822-829,共8页 Oceanologia Et Limnologia Sinica
基金 国家重点研发计划项目,2021YFB2601100号。
关键词 无限水深 边界元方法 简单格林函数 多极子展开 infinite water depth boundary element method(BEM) simple Green’s function multipole expansion
  • 相关文献

参考文献4

二级参考文献21

  • 1Athanassonlis GA (1984). An expansion theorem for waterwave potentials. Journal of Engineering Mathematics, 18, 181-194.
  • 2Bolton WE, Ursell F (1973). The wave force on an infinite long circular cylinder in an oblique sea. Journal of Fluid Mechanics, 57, 241-256.
  • 3Das Dilip, Mandal BN (2009). Wave scattering by a circular cylinder half-immersed in water with an ice-cover. International Journal of Engineering Sciences, 47, 463-474.
  • 4Gradshteyn IS, Ryzhik IM (1980). Table of Integrals, Series and Products. Academic Press Inc., Burlington.
  • 5Havelock TH (1955). Waves due to a floating sphere making periodic heaving oscillations. Proceedings of Royal Society London, London, A 231, 1-7.
  • 6Linton CM, McIver P (2001). Handbook of mathematical techniques for wave/structure introductions. Chapman and Hall/CRC Boca Raton, 247-270.
  • 7Mandal BN, Goswami SK (1984). Scattering of surface waves obliquely incident on a fixed half-immersed circular cylinder. Mathematical Proceedings of Cambridge Philosophical Society, Cambridge, 96, 359-369.
  • 8Rhodes-Robinson PF (1970). Fundamental singularities in the theory of water waves with surface tension. Bulletin of Australian Mathematical Society, 2, 317-333.
  • 9Thome RC (1953). Multipole expansions in the theory of surfa-ce waves. Proceedings of Cambridge Philosophical Society, Cambridge, 49, 707-716.
  • 10Ursell F (1949). On the heaving motion of a circular cylinder on the surface of a fluid. Quarterly Journal of Mechanics and Applied Mathematics, 2, 218-231.

共引文献49

同被引文献22

引证文献1

  • 1尤再进,尹宝树.前言[J].海洋与湖沼,2022,53(4):789-790.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部