摘要
Rechargeable aqueous zinc-ion batteries(ZIBs)are regarded as a promising competition to lithium-ion batteries as energy storage devices,owing to their high safety and low cost.However,the development of high-performance ZIBs is largely hindered by the shortage of ideal cathode materials with high-rate capability and long-cycle stability.Herein,we address this bottleneck issue by the quenching-tailored surface chemistry of V_(2)O_(5) cathode nanomaterial.By rapid quenching from high temperatures,Al ions are doped into V_(2)O_(5) lattice(Al-V_(2)O_(5))and abundant oxygen vacancies are formed on the surface/nearsurface,which facilitate the desired rapid electron transfers.Our density functional theory(DFT)simulations elucidate that the doping of Al ions into V_(2)O_(5) remarkably reduces the Zn^(2+)-diffusion barriers and improves the electrical conductivity of V_(2)O_(5).As a proof-of-concept application,the thus-optimized AlV_(2)O_(5) cathode delivers a superior specific capacity of 532 m Ah g^(-1) at 0.1 A g^(-1) and a long-cycling life with76%capacity retention after 5000 cycles,as well as a good rate performance.This work provides not only a novel strategy for tuning the surface chemistry of V_(2)O_(5) to boost the Zn^(2+)storage but also a general pathway of modifying metal oxides with improved electrochemical performance.
基金
partially supported by the National Natural Science Foundation of China(Grant Nos.21771030,12004324)
the Guangdong Basic and Applied Basic Research Foundation(2019A1515110859)
the support by MOE,Singapore Ministry of Education(MOE2018-T2-295,Singapore),for research of this work conducted at the National University of Singapore
the financial support from China Scholarship Council(CSC No.202006060158)。