摘要
The reconstruction during oxygen evolution reaction (OER) significantly affects the electronic and local geometry structure of metal sites in electrocatalyst.Compared with well-investigated cobalt-based materials,the reconstruction of rocksalt CoO with purely Co^(2+) in octahedral (Oh) coordination has not been revealed in detail.Herein,monolayer Co O supported on reduced graphene oxide (r GO) was synthesized via a one-pot hydrothermal strategy with calcinating in Ar atmosphere.The structure evolution of twodimension (2D) Co O/r GO during OER was revealed by in situ X-ray absorption spectroscopy (XAS).The transition from Co O toward Co3O_(4) already occurred at open circuit potential,further enhanced at 1.23 V (vs.RHE).The Co Ox(OH)ywas determined as the active phase at 1.53 V,displaying a tetrahedral Co coordination defective spinel Co_(3)O_(4) with the Co-O shell that featured the (oxy)hydroxide,not the standard Co OOH.After OER,the irreversible transition from CoO to Co_(3)O_(4) was observed.In contrast,in situ Raman spectra revealed a reversible amorphization process on Co_(3)O_(4)/r GO under operation conditions.Furthermore,this study indicated that the reconstruction behavior could be more effectively revealed by XAS using 2D materials.
基金
supported by the National Natural Science Foundation of China(21872093)
the National Key Research and Development Program of China(2018YFB1502001)
funding support from the Center of Hydrogen Science,Shanghai Jiao Tong University,China。