期刊文献+

基于PCA-BP神经网络的随钻参数岩性智能感知方法研究 被引量:4

Research on Lithology Intelligent Sensing Method of Drilling Parameters Based on PCA-BP Neural Network
原文传递
导出
摘要 针对地下金属矿山掘进过程中岩层信息参数获取难度大、岩性判别精度低等问题,提出一种基于主成分分析法(PCA)和BP神经网络的岩性智能感知方法:首先,通过理论分析,构建基于PCA-BP神经网络的随钻参数岩性智能感知模型;然后,通过相似材料模拟3种不同岩性的“三层一体”岩样,利用特制的凿岩机钻进试验台获取钻机钻进速度、回转速度、钻压、回转压力、回转扭矩和泥浆泵压力等6种随钻参数;最后,对理论模型进行训练和检验。结果表明,PCA-BP神经网络岩性智能感知方法与传统的BP神经网络岩性智能感知模型相比,减少了模型计算量,且岩性智能感知的准确率得到了有效提升。 There are complex geological conditions and poor underground production conditions in underground metal mines,leading to the difficulty of obtaining rock information parameters and the low accuracy of lithology identification in the process of underground tunneling.Thus,a lithology intelligent sensing method based on principal component analysis(PCA)and BP neural network was proposed to improve the intelligent level of tunneling.Firstly,through theoretical analysis,an intelligent lithology perception model with drilling parameters based on PCA-BP neural network was constructed.Then,the three-layers-in-one rock samples with different lithologies were simulated by similar materials,and six kinds of drilling parameters such as drilling speed,rotary speed,drilling pressure,rotary pressure,rotary torque and slurry pump pressure were obtained by using a special drilling rig.Finally,the theoretical model was trained and tested.The results show that compared with the traditional BP neural network lithology intelligent sensing model,the lithology intelligent sensing method based on PCA-BP neural network reduces the amount of model calculation,and effectively improves the sensing.
作者 和郑翔 卢才武 居培 刘泽洲 白晶晶 HE Zhengxiang;LU Caiwu;JU Pei;LIU Zezhou;BAI Jingjing(School of Resources Engineering,Xi'an University of Architecture and Technology,Xi'an,Shaanxi 710055,China;Xi'an Key Laboratory of Smart Industry Perception and Computing,Xi'an,Shaanxi 710055,China;Xi'an Resources Institute,China Coal Technology&Engineering Group Corp.,Xi'an,Shaanxi 710076,China;School of Architecture,Xi'an University of Architecture and Technology,Xi'an,Shaanxi 710055,China)
出处 《矿业研究与开发》 CAS 北大核心 2022年第7期155-159,共5页 Mining Research and Development
基金 国家自然科学基金项目(5197040521) 陕西省自然科学基础研究计划联合基金项目(2019JLP-16)。
关键词 随钻参数 主成分分析 BP神经网络 岩性智能感知 Drilling parameters Principal component analysis BP neural network Lithology intelligent sensing
  • 相关文献

参考文献19

二级参考文献338

共引文献1175

同被引文献157

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部