摘要
为了更加客观全面准确地评价大学生体质健康水平,本文分析了现行大学生体质健康评价体系,探索制定新的大学生体质健康评价指标和评价模型,引入体脂率、台阶试验、握力等三个指标建立新的评价指标体系,运用PSO-BP神经网络模型确定指标权重。结果显示,基于PSO-BP神经网络建立的大学生体质健康评价模型误差小,评价结果准确,可以较真实地反映大学生体质健康水平。
This paper presents an analysis of the current assessment system of college students’physical health,and proposes new indicators and new model for the assessment of college students’physical health,for the purpose of a more objective,comprehensive and accurate assessment of the physical health level of college students.A new assessment indicator system was established,consisting of the three indicators:body fat rate,bench test,and grip strength.PSO-BP neural network model was used to determine the weight of indicators.The findings show that the college students’physical health assessment model based on PSO-BP neural network has little error,and produces accurate assessment results,and it can mirror the physical health level of college students.
作者
徐方超
陈雨琦
孙凤
郭辉
张一民
Xu Fangchao;Chen Yuqi;Sun Feng;Guo Hui;Zhang Yimin(School of Mechanical Engineering,Shenyang University of Technology,Shenyang 110870,Liaoning,China)
出处
《体育科技文献通报》
2022年第7期130-133,共4页
Bulletin of Sport Science & Technology
基金
国家重点研发计划(项目编号:NO.2020YFC2006701)。
关键词
大学生
体质健康水平
评价指标
PSO-BP神经网络
评价模型
College Students
Physical Health Level
Assessment Indicators
PSO-BP Neural Network
Assessment Model