期刊文献+

金属有机骨架Ni⁃BTC和Ni⁃BDC的溶剂效应形貌调控及超级电容器性能 被引量:2

Solvent⁃Controlled Morphology of Ni⁃BTC and Ni⁃BDC Metal⁃Organic Frameworks for Supercapacitors
下载PDF
导出
摘要 储能材料的性能在很大程度上取决于它们的结构和形貌。我们使用简单的溶剂热方法,通过改变溶剂合成了不同形貌的Ni-1,3,5-苯三甲酸(Ni-BTC)和Ni-1,4-苯二甲酸(Ni-BDC)金属有机骨架材料。Ni-BTC有不规则块状、球状和八面体3种形貌,Ni-BDC有纳米片状、花状和不规则块状3种形貌。对Ni-BTC和Ni-BDC作为超级电容器电极材料的性能进行了研究。结果表明,通过溶剂热方法,在N,N-二甲基甲酰胺(DMF)溶剂中合成出的Ni-BTC和Ni-BDC电极材料的超级电容器性能要优于乙醇(EtOH)和DMF/EtOH(50∶50,V/V)溶剂。 The performance of energy storage materials is substantially dependent on their nanostructures.Herein,Ni-1,3,5-benzenetricarboxylate(Ni-BTC)and Ni-1,4-benzoate(Ni-BDC)metal-organic frameworks with different morphologies were controllably synthesized using a facile solvothermal method by simply adjusting the solvent,including Ni-BTC blocks,nanospheres,and double-pyramid structures and Ni-BDC nanosheets,nanoflowers and blocks structures,and their electrochemical performance as supercapacitors was thoroughly investigated.Moreover,our study showed that the supercapacitor performance of the electrode materials obtained for Ni-BTC and Ni-BDC electrodes in pure N,N-dimethylformamide(DMF)solvent was better than those prepared with pure ethanol(EtOH)and DMF/EtOH(50∶50,V/V)as solvent.
作者 牛百通 夏汪男 赖招琴 郭鸿旭 陈彰旭 NIU Bai-Tong;XIA Wang-Nan;LAI Zhao-Qin;GUO Hong-Xu;CHEN Zhang-Xu(College of Chemistry,Chemical Engineering,and Environment,Minnan Normal University,Zhangzhou,Fujian 363000,China;Fujian Provincial University Key Laboratory of Ecological Environment and Information Atlas,Putian University,Putian,Fujian 351100,China)
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2022年第8期1643-1654,共12页 Chinese Journal of Inorganic Chemistry
基金 福建省自然科学基金(No.2020J01803) 生态环境及其信息图谱福建省高等学校重点实验室开放课题(No.ST22002)资助。
关键词 超级电容器 形貌调控 溶剂热法 金属有机骨架 supercapacitor morphology tuning solvothermal method metal-organic frameworks
  • 相关文献

参考文献7

二级参考文献22

  • 1Chae, H. K.; Siberio-Perez, D. Y; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 2004, 427, 523-527.
  • 2Chert, B.; Ockwig, N. W.; Millward, A. R.; Contreras, D. S.; Yaghi, O. M. High H2 adsorption in a microporous metal-organic framework with open metal sites. Angew. Chem. Int. Ed. 2005, 44, 4745-4749.
  • 3Corma, A.; Garcia, H.; Xamera, E X. L. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 2010, 1 I0, 4606--4655.
  • 4Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 2000, 404, 982-986.
  • 5Banerjee, M,; Das, S.; Yoon, M.; Choi, H, J.; Hyun, M. H.; Park, S. M.; Seo, (3.; Kim, K. Postsynthetic modification switches an acbiral framework to catalytically active homochiral metal-organic porous materials. J. Am. Chem. Soc. 2009, 131,7524-7525.
  • 6Li, M. Y.; Dinca, M. Reductive electrosynthesis of crystalline metal-organic frameworks. J. Am. Chem. Soc. 2011, 133, 12926-12929.
  • 7Givaja, G; Amo-Ocboa, P.; Gomez-Garcia, C. J.; Zamora, F. Electrical conductive coordination polymers. Chem. Soc. Rev. 2012, ,11,115-147.
  • 8Duan, C. Y.; Wei, M. L.; Guo, D.; He, C.; Meng, Q. J. Crystal structures and properties of large protonated water clusters encapsulated by metal-organic frameworks. J. Am. Chem. Soc. 2010, 132, 3321-3330.
  • 9Saito, Y; Kataoka, H.; Murata, S.; Uetani, Y.; Kii, K.; Minamizaki, Y Designing of a urea-containing polymer gel electrolyte based on the concept of activation of the interaction between the carrier ion and polymer. J. Phys. Chem. B 2003, 107, 8805-8811.
  • 10Ohkoshi, S.; Nakagawa, K.; Tomono, K.; Imoto, K.; Tsunobuchi, Y.; Tokoro, H. High proton conductivity in Prussian blue analogues and the interference effect by magnetic ordering. J. Am. Chem. Soc. 2010, 132, 6620-6621.

共引文献42

同被引文献11

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部