摘要
针对传统进化算法在解决高维多目标优化问题时,因选择压力减少而产生的搜索能力急剧下降的现象,提出了一种多任务机制驱动的高维多目标优化算法。该算法首先采用一种自适应降维算子来构造与原始高维优化任务相关的低维任务,以此来增加优化过程中的选择压力。在低维任务的构造过程中,根据对当前目标子集的评估结果来自适应地选择合适的降维技术对原始高维任务进行降维。然后采用多任务机制同时对低维任务及原始高维任务进行优化。算法采用一种任务间交流算子来完成个体任务分配以及种群的更新操作,进而使得算法在利用低维任务提高搜索能力的同时能够避免降维所引起的有用信息丢失。此外,为了避免算法在搜索过程中出现早熟现象,通过对外部种群中出现代数较多的个体进行差分变异来增加外部种群的多样性。实验部分将该算法与几种常用的高维多目标进化算法在5组标准测试函数上进行对比分析。仿真结果验证了该算法在求解高维多目标优化问题时的有效性。
The searching ability of traditional evolutionary algorithms decrease srapidly because of the reduced selection pressure in dealing with many-objective optimization problems.Therefore,a many-objective evolutionary algorithm based on a multitasking mechanism is proposed.To increase the selection pressure in optimization processes,an adaptive objective reduction strategy is adopted to construct the low-dimensional task,which is related to the traditional many-objective optimization task.In the construction of low-dimensional tasks,the appropriate dimension reduction technique is chosen according to the evaluation of the current objective subset adaptively.After that,the constructed low-dimensional task and the original many-objective task are optimized simultaneously according to the multitasking mechanism.In this paper,an inter-task interaction strategy is adopted to allocate tasks to individuals and update the individual population,so as to improve the searching ability and avoid information loss because of dimension reduction.Moreover,a differential mutation operator is implemented on the individuals which remain unchanged for several generations from the repository population to avoid converging prematurely.In the experimental part,the proposed algorithm is tested on five groups of benchmark functions with several state-of-the-art many-objective evolutionary algorithms.Statistical results demonstrate the effectiveness of the proposed algorithm in solving many-objective optimization problems.
作者
刘天宇
曹磊
LIU Tianyu;CAO Lei(School of Information Engineering,Shanghai Maritime University,Shanghai 201306,China)
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2022年第4期134-143,183,共11页
Journal of Xidian University
基金
国家自然科学基金(61806122)。
关键词
多任务
高维目标优化
进化算法
目标降维
自适应算法
multitasking
many-objective optimization
evolutionary algorithms
objective reduction
adaptive algorithms