期刊文献+

Scalable carbon black deposited fabric/hydrogel composites for affordable solar-driven water purification 被引量:1

原文传递
导出
摘要 Interfacial solar-driven evaporators have presented great potential for water purification owing to their low energy consumption and high steam generation efficiency. However, their further applications are hindered by the high costs and complicated fabrication processes. Here, a scalable bilayer interfacial evaporator was constructed via an affordable technique, in which carbon black deposited nonwoven fabric(CB@NF) was employed as the upper photothermal layer, as well as PVA/starch hybrid hydrogel for selffloating and water transport. Under simulated one sun irradiation, CB@NF layer displayed excellent photothermal conversion performance, whose temperature could increase 30.4 ℃ within 15 min. Moreover,the introduction of starch into PVA endowed the hybrid hydrogels with considerable water-absorption capability on the premise of ensuring mechanical properties. The resultant CB@NF/PVA/starch composites achieved superior interfacial adhesion performance with interfacial toughness at about 200 J m.Combining with good evaporation performance, salt-rejection property and high purification efficiency on pollutants, this evaporation system would become a promising candidate to alleviate water shortage.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第11期10-18,共9页 材料科学技术(英文版)
基金 financially supported by the National Natural Science Foundation of China (No.51733002,51803022 and 52003042) the Fundamental Research Funds for the Central Universities (No.2232021D-05)。
  • 相关文献

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部