期刊文献+

Porous N-doped Ni@SiO_(2)/graphene network: Three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption 被引量:4

原文传递
导出
摘要 Electromagnetic wave absorber is critical for reducing increasingly serious electromagnetic wave pollu-tion,however,the development of lightweight and broadband microwave absorbers remains a pressing challenge.We report here the rational design and synthesis of N-doped Ni@SiO_(2)/graphene composite con-structed from 3D interconnected porous graphene network and Ni@SiO_(2) core-shell architecture,which fulfills lightweight and broadband requirements while exhibiting highly efficient electromagnetic wave absorption.The porous graphene network,functioning both as lightweight support and dielectric medi-ator,was synthesized via NaCl template-assisted high-temperature calcination method.Upon uniformly attached with core-shell Ni@SiO_(2) on the surface,the resulting abundant heterogeneous interfaces con-structed by graphene-Ni and Ni-SiO_(2) strongly reinforce polarization loss.The presence of low dielectric SiO_(2) allows facile tuning of the complex permittivity of ternary composite by adjusting coating thick-ness to balance the attenuation ability and impedance matching.Moreover,further N-doping of graphene assists in the optimization of dielectric loss ability.Taking account of the advantages arising from the porous hierarchical architecture,multiple absorption centers and diverse interfaces,the lightweight com-posite exhibits an ultra-strong reflection loss(RL)value of-71.13 dB at 13.76 GHz with a thickness of 2.46 mm and broad effective absorption bandwidth of 7.04 GHz at a low filler content of 15 wt.%.More importantly,the effective absorption range covers 13.28 GHz(4.72-18 GHz)with the optimized thickness of 1.6-5 mm,representing 83%of the whole range of frequencies.Our results demonstrate that the novel 3D porous N-doped Ni@SiO_(2)/graphene network with hierarchical architecture is a promising candidate for high-performance electromagnetic wave absorption.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第11期108-117,共10页 材料科学技术(英文版)
基金 supported by the National Natural Science Foundation of China (Nos.91963204 and 51871053) Shanghai Pujiang Program (No.19PJ1400200) the Fundamental Research Funds for the Central Universities (Nos.2232019G-07 and 2232020A-02)。
  • 相关文献

参考文献1

二级参考文献2

共引文献18

同被引文献78

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部