摘要
Three-dimensional(3D)porous boron-doped diamond(BDD)flm is an attractive electrode material but tough to synthesize.Herein,the 3D porous BDD flms were constructed in a facile and template-free way.The BDD/non-diamond carbon(NDC)composite flms were frstly fabricated by hot flament chemical vapor deposition(HFCVD)technique,and then the porous BDD flms with 3D interconnected porous microstructure,different pore size and NDC-free diamond were achieved by selective removal of NDC.It is manifested that higher electrochemical response,large double layer capacitance(17.54 m F/cm^(2))in diamond electrodes,wide electrochemical window of 2.6 V and superior long-term stability were achieved for 3D porous BDD flm.This derives from the synergistic effect of microstructure and phase composition of the porous flms.3D interconnected structure possesses prominent improvement of effective surface area and accessible porous channel,signifcantly enhancing the species adsorption and mass transfer.The3D porous BDD flms,composed of NDC-free diamond,exhibit excellent structural stability and corrosion resistance,which favor the enhancement of long-term stability and water splitting overpotential.The facile fabricating approach and excellent structure/electrochemical character demonstrate the appealing application in many electrochemical felds for 3D porous BDD flms,such as energy storage and conversion,wastewater treatment and purifcation.
基金
fnancial support from the STS project of the Fujian Province and Chinese Academy of Sciences(No.2020T3001)
the Young Talent Program of Shenyang National Laboratory for Materials Science(L2020F40)
the Instrument Development Project of Shenyang National Laboratory for Materials Science(L2020E08)。