期刊文献+

针对大规模多输入多输出的动态调整排序串行干扰消除算法 被引量:1

Dynamically Adjusted Order Successive Interference Cancellation Algorithm for Massive Multiple Input Multiple Output
原文传递
导出
摘要 针对多输入多输出(MIMO)系统非线性检测中排序串行干扰消除(OSIC)算法信号检测性能弱的问题,提出了一种可动态调整的OSIC(D-OSIC)检测算法。为解决早期的误差传播问题,通过最大似然(ML)算法选择最佳符号,提高ML-D-OSIC算法的检测性能。根据遍历容量动态调节消除层的数目,并结合混合迭代算法降低算法的复杂度。仿真结果表明,ML-D-OSIC算法的信号检测性能明显优于OSIC算法,检测性能可通过调整预定义阈值、偏移量和权重而提升,且复杂度远低于ML算法。 Aiming at the low signal detection performance of the order successive interference cancellation(OSIC)algorithm in the nonlinear detection of multiple input multiple output(MIMO)systems,the paper proposes a dynamic adjusted OSIC(DOSIC)detection algorithm.In order to solve the problem of early error propagation,the maximum likelihood(ML)is used to select the best symbol which could improve the detection performance of the MLDOSIC algorithm.The number of elimination layers is dynamically adjusted due to the traversal capacity.Compared with the hybrid iterative algorithm,the complexity of the algorithm is reduced.The simulation results show that MLDOSIC algorithm is superior to the OSIC algorithm in signal detection performance.The detection performance improves with the difference of predefined threshold,offset and weight.The complexity is much lower than that of ML algorithm.
作者 申东 赵丹 李强 刘家乐 Shen Dong;Zhao Dan;Li Qiang;Liu Jiale(School of Electronics and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,Gansu,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2022年第11期251-259,共9页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61741113) 甘肃省科技计划(20JR10RA273)。
关键词 信号处理 多输入多输出 信号检测 最大似然算法 串行干扰消除 signal processing multiple input multiple output signal detection maximum likelihood algorithm successive interference cancellation
  • 相关文献

参考文献7

二级参考文献36

  • 1赵辰,刘应状,朱光喜.VLST系统中ZF检测算法的研究[J].无线电通信技术,2007,33(2):37-39. 被引量:5
  • 2GOTTUMUKKALA VKV, MINN H. Capacity Analysis and Pilot-Data Power Allocation for MIMO-OFDM with Transmitter and Receiver IQ Imbalances and Residual Carrier Frequency Offset[J]. IEEE Trans. Vehicular Technology, 2012, 61(2): 553-565.
  • 3XU J, LEE SJ. Adaptive Resource Allocation for MIMO-OFDM Based Wireless Multicast Systems[J]. IEEE Trans. Broadcasting, 2010, 56(1): 98-102.
  • 4FENG W, GE N, LU JH. Hierarchical Transmission Optimization for Massively Dense Distributed Antenna Systems[J]. IEEE Commun. Lett., 2015, 19(4): 673-676.
  • 5FORENZA A, MCKAY MR. Adaptive MIMO Transmission for Exploiting the Capacity of Spatially Correlated Channels[J]. IEEE Trans. Vehicu- lar Technology, 2007, 56(2): 619-630.
  • 6FENG W, WANG Y, GE N, LU JH, ZHANG JS. Virtual MIMO in Multi-cell Distributed Antenna Systems: Coordinated Transmissions with Largescale CSIT[J]. IEEE J. Sel. Areas Commun., 2013, 31(10): 2067-2081.
  • 7BAEK MS, WOO M. SMLD: Enhanced MIMO-Signal Detection for Wireless MIMO Communication Receivers[J]. ETRI J., 2007, 29(2): 240-242.
  • 8MATTHAIOU M, CHATZIDIAMANTIS ND. ZF Detectors over Correlated k Fading MIMO Channels[J]. IEEE Trans. Communications, 2011, 59(6): 1591-1603.
  • 9JIANG Y, VARANASI MK. Performance Analysis of ZF and MMSE Equalizers for MIMO Systems: An In-Depth Study of the High SNR Regime[J]. IEEE Trans. Information Theory, 2011, 57(4): 2008-2026.
  • 10STEINER A,LUPU V. The Spectral Efficiency of Successive Cancellation with Linear Multiuser Detection for Randomly Spread CDMA[J]. IEEE Trans. Information Theory, 2012, 58(5): 2850- 2873.

共引文献24

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部