期刊文献+

一种认知无线网络中的协作用户快速频谱感知优化算法 被引量:1

A FAST SPECTRUM SENSING OPTIMIZATION ALGORITHM FOR COOPERATIVE USERS IN COGNITIVE RADIO NETWORKS
下载PDF
导出
摘要 认知无线电是一种智能技术,它可以根据周围无线环境的改变而自动快速调整频谱参数。在认知无线电中需要采用频谱感知技术来快速探测频谱空穴。分析了一种基于能量检测法进行频谱感知的优化算法,该算法起到了优化代价函数的目的。在此基础上提出一种复杂网络结构下快速频谱感知的方法,该算法在满足给定临界代价函数的情况下,减少了所需的协作认知用户数,改善了漏检率性能。 Cognitive radio is an intelligent technology which has the ability to rapidly and autonomously adapt spectrum parameters according to the changing environments and conditions. In cognitive radio, spectrum sensing technology need to be used to quickly detect spectrum holes. We analyzed a kind of optimization rule based on energy detection for spectrum sensing, which optimized the cost function. On the basis of that, we proposed a fast spectrum sensing algorithm for a complex network. Under the condition of satisfying the given cost function, the algorithm reduced the number of cooperative cognitive users and improved the performance of missed detection rate.
作者 范波勇 张敏 周井泉 Fan Boyong;Zhang Min;Zhou Jingquan(School of Software,Changsha Social Work College,Changsha 410004,Hunan,China;Hunan Post and Telecommunication College,Changsha 410015,Hunan,China;School of Electronic and Optical Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,Jiangsu,China)
出处 《计算机应用与软件》 北大核心 2022年第7期117-120,共4页 Computer Applications and Software
基金 国家自然科学基金面上项目(61771254) 湖南省教育厅科学研究项目(18B594,20C1370)。
关键词 认知无线电 协作频谱感知 代价函数 漏检率 Cognitive radio Cooperative spectrum sensing Cost function Missing detection rate
  • 相关文献

参考文献4

二级参考文献18

  • 1Federal Communications Commission. Spectrum policy task force report [C]//FCC Report of the Spectrum Efficiency Working Group. USA: FCC, Nov. 2002: 2-155.
  • 2S Haykin. Cognitive radio: brain-empowered wireless communications [J]. IEEE Journal on Selected Areas in Communications (S0733-8716), 2005, 23(2): 201-220.
  • 3T Weiss, et al. Mutual interference in OFDM-based spectrum pooling systems [C]//Proc. of IEEE Vehicular Technology Conference, VTC 2004-Spring, vol. 4. USA: IEEE, May 2004: 1.873-1877.
  • 4Bansal G, Hossain M J, Bhargava V K. Adaptive Power Loading for OFDM-based Cognitive Radio Systems [C]// Proc, of IEEE Interilational Conference on Communications. USA: IEEE, June 2007: 5137-5142.
  • 5A Attar, O Holland, M R Nakhai, A H Aghvami. Interference-limited resource allocation for cognitive radio in orthogonal frequency division multiplexing networks [J]. IET Communications (S1751-8628), 2008, 2(6): 806-814.
  • 6T Qin, C Leung. Fair adaptive resource allocation for multiuser OFDM cognitive radio systems [C]// Proc. Second Int. Conf. Communications and Networking in China (CHINACOM), Shanghai China. USA: IEEE, Aug. 2007:115-119.
  • 7Yonghong Zhang, Leung C. Subcarrier, Bit and Power Allocation for Multiuser OFDM-based Multi-Cell Cognitive Radio Systems [C]// Proc. of IEEE Vehicular Technology Conference, 2008, VTC 2008-Fall. USA: IEEE. Sept 2008: 1-5.
  • 8Yonghong Zhang, Letmg C. An Efficient Power-Loading Scheme for OFDM-Based Cognitive Radio Systems [J]. IEEE Transactions on Vehicular Technology (S0018-9545), 2010, 59(4): 1858-1864.
  • 9Hasan Z, Bansal G, Hossain E, Bhargava V. Energy-Efficient Power Allocation in OFDM-Based Cognitive radio Systems A Risk-return Model [J]. IEEE Transactions on Wireless Communications (S1536-1276), 2009, 8(12): 6078-6088.
  • 10Sadr S, Anpalagan A, Raahemifar K. A Novel Subcarrier Allocation Algorithm for Multiuser OFDM System with Fairness: User's Perspective [C]// Proc. of IEEE Vehicular Technology Conference, 2007. VTC-2007 Oct. Sept 2007. USA: IEEE, 2007:1772-1776.

共引文献21

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部