期刊文献+

深度集成网络在癫痫预测中的应用研究

DEEP ENSEMBLE MODEL IN PREDICTION OF EPILEPSY
下载PDF
导出
摘要 针对传统方法在脑电信号上捕获癫痫发作时无法有效利用全部信息的问题,提出深度集成网络的方法从脑电信号中学习多维特征以有效检测癫痫发作。对卷积网络的平移不变性和计算效率进行修复提升后纵向集成循环神经网络以同时捕获频域、空域和时域信息。基于深度集成网络进行患者特异性和跨患者模型的训练,两种模型分别达到了平均98.22%和95.65%的灵敏度以及0.09次/h和0.3次/h的误诊率,优于传统模型的结果。实验表明深度集成网络有能力学习癫痫发作的一般不变表示。 Aiming at the problem that traditional methods cannot effectively utilize all the information when capturing seizures on EEG signals, this paper proposes deep ensemble networks to capture multi-dimensional features from EEG signals, so as to effectively detect seizures. After the translation invariance and computational efficiency of convolution network were repaired and improved, the cyclic neural network was vertically integrated to capture the information in frequency domain, spatial domain and time domain at the same time. The patient-specific and cross-patient model was trained based on deep integration network. The two models achieve an average sensitivity of 98.22% and 95.65%, and a misdiagnosis rate of 0.09/h and 0.3/h, which perform better than the benchmark model. It demonstrates that deep ensemble network has the ability to learn the general invariant representation of seizures.
作者 杨泽鑫 朱晓军 Yang Zexin;Zhu Xiaojun(College of Information and Computer,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China)
出处 《计算机应用与软件》 北大核心 2022年第7期181-187,194,共8页 Computer Applications and Software
基金 山西省自然科学基金项目(201701D11100202)。
关键词 癫痫 脑电图 多尺度卷积 循环卷积网络 发作预测 Epilepsy EEG Multi-scale convolution Cyclic convolution network Seizure prediction
  • 相关文献

参考文献3

二级参考文献13

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部