期刊文献+

V型无压载水油船货舱中横剖面拓扑优化 被引量:2

Topology Optimization of Midship Section of Cargo Hold of V-Type Non-Ballast Water Tanker
下载PDF
导出
摘要 为了优化V型无压载水油船的中横剖面结构,得到更加合理的结构型式,利用变密度法对其进行拓扑优化。选择合适的优化设计区域,以分段重量为约束条件,同时考虑实际生产建造工艺特点,以柔度值最小(即刚度最大化)作为目标函数建立拓扑优化数学模型。同时分析确定优化设计区域初始厚度不同对优化设计的影响,得到载荷的最佳传递路径。最后参考拓扑优化的结果得出新的强框架型式。结果表明,优化后的刚度较之前提高了6.8%,是更加合理的结构型式。对V型船中横剖面进行拓扑优化可在质量不增加的前提下提高其结构性能。 In order to optimize the midship section structure of V-type non ballast water tanker and obtain a more reasonable structure,the variable density method is used to optimize its topology.The optimal design area is selected.The weight of the section is taken as the constraint condition,and the characteristics of actual production are considered.The minimum flexibility value(i.e.maximum stiffness) is taken as the objective function to establish the mathematical model of topology optimization.The influence of different initial thickness of the optimal design area on the optimal design is determined,and the optimal load transfer path is obtained.Finally,referring to the results of topology optimization,a new type of strong frame is obtained.The results show that the stiffness after optimization is increased by 6.8%,which is a more reasonable structure.The topology optimization of V-shaped midship section can improve its structural performance without increasing its weight.
作者 苏绍娟 王国回 张祥 SU Shaojuan;WANG Guohui;ZHANG Xiang(Naval Architecture and Ocean Engineering College,Dalian Maritime University,Dalian 116026,Liaoning,China)
出处 《船舶工程》 CSCD 北大核心 2022年第4期58-63,共6页 Ship Engineering
基金 国家自然科学基金项目(51609031) 中央高校基本科研业务费专项基金资助项目(3132019320)。
关键词 V型油船 无压载水 变密度法 货舱 中横剖面 拓扑优化 V-type non ballast water tanker non-ballast water variable density method cargo hold midship section topological optimization
  • 相关文献

参考文献6

二级参考文献29

  • 1徐玉如,苏玉民,庞永杰.海洋空间智能无人运载器技术发展展望[J].中国舰船研究,2006,1(3):1-4. 被引量:87
  • 2He NV, Nihei Y, Ikeda Y (2012a). A study on application of a commercial CFD code to reduce resistance acting on a NBT- Part 1. The Japan Society of Naval Architects and Ocean Engineers, Kobe, 415-418.
  • 3He NV, Nihei Y, lkeda Y (2012b). A study on application of CFD code to reduce resistance acting on a non ballast tanker-Part 2. The 6th Asia-Pacific Workshop on Marine Hydrodynamic, Johor, 264-269.
  • 4He NV, Nihei Y, Ikeda Y (2012c). A study on an optimum hull form in waves for a non ballast tankers and bulkers. The Advanced Maritime Engineering Conference and the 5th Pan Asian Association of Maritime Engineering Societies, Taipei, Paper No. NSC-01.
  • 5Tatsumi T, Nihei Y, lkeda Y (2010). Development of a new energy saving tanker with non ballast water and podded propulsor. The 5th Asia-Pacific Workshop on Marine Hydrodynamic, Osaka, 25-28.
  • 6Tatsumi T, Nihei Y, lkeda Y (2011). Development of a new energy saving tanker with non ballast water-Part 1. The Japan Society of Naval ArchRects and Ocean Engineers, Fukuoka, 216-218 (in Japanese).
  • 7Tomita A, Nihei Y, Ikeda Y (2011). Development of a new energy saving tanker with non ballast water-Part 2. The Japan Society of Naval Architects and Ocean Engineers, Fukuoka, 219-222 (in Japanese).
  • 8冯罔庆.船舶结构疲劳强度评估方法研究[D].哈尔滨:哈尔滨工程大学,2006.
  • 9GLEN I F, DINOVITZER A, PATERSON R B, et al. Fatigue-resistant detail design guide for ship struc- tures:SSC-405 [R]. [S.l.:s.n.], 1999.
  • 10王琳,胡奇.三参数威布尔分布拟合方法探讨[C]//武汉地区第五届船舶与海洋工程研究生学术论坛,2012.

共引文献11

同被引文献18

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部