期刊文献+

基于MCNN-GRU的舰面目标碰撞预警方法 被引量:1

Ship Surface Target Collision Warning Method Based on MCNN-GRU
下载PDF
导出
摘要 为提升甲板舰面目标的转运安全性,提出一种多个CNN-GRU(multipleCNN-GRU,MCNN-GRU)碰撞预警网络模型。该网络融合了卷积神经网络(convolutional neural network,CNN)对单时间步信息特征的提取能力以及门控循环单元(gate recurrent unit,GRU)对时序序列的记忆能力,通过多通道网络结构提升对多时间步信息特征的处理性能;在数据集上,利用目标检测网络和关键点检测网络、位姿解算模型及碰撞检测方法制作舰面目标碰撞预警数据集。通过不同网络在数据集上进行实验的结果表明:该模型对舰面目标的双机碰撞预警精度为92.44%,具有较好的效果。 A multiple CNN-GRU(MCNN-GRU) collision warning network model is proposed to improve the transfer safety of ship surface targets.The network combines the feature extraction ability of convolutional neural network(CNN)for single time step information and the memory ability of gated recurrent unit(GRU) for time sequence.Multi-channel network structure is used to improve the processing performance of multi-time step information features.Target detection network,key point detection network,pose calculation model and collision detection method are used to produce ship surface target collision warning data set.The experimental results on different network data sets show that the collision warning accuracy of the model is 92.44%,and it has a good effect.
作者 汪丁 黄葵 朱兴动 范加利 王正 Wang Ding;Huang Kui;Zhu Xingdong;Fan Jiali;Wang Zheng(Qingdao Campus,Naval Aviation University,Qingdao 266041,China;Naval Aviation University,Yantai 264001,China)
出处 《兵工自动化》 2022年第8期52-57,80,共7页 Ordnance Industry Automation
基金 军内科研基金。
关键词 卷积神经网络 门控循环单元 碰撞预警 循环神经网络 舰面目标 convolutional neural network gated recurrent unit collision warning recurrent neural network ship surface target
  • 相关文献

参考文献4

二级参考文献48

  • 1洪伟宏,王兵.从技术特征和设计思想看航母划代[J].国防,2009(10):78-81. 被引量:3
  • 2曲东才,周胜明.舰载机起飞技术研究[J].航空科学技术,2004(4):25-29. 被引量:15
  • 3黄健伟,陆悦铭,李义斌.AIS时代VTS面临的新课题[J].上海海事大学学报,2007,28(3):19-23. 被引量:13
  • 4ALE B J, BEI.LAMY L J, COOKE R M, et al. Towards a causal model for air transport safety [J]. Safety Sci ence, 2006,44(8) :657-673.
  • 5DARWIN R L, BOWAN H I.. Aircraft Carrier Flight and Hangar Deck Fire Protection History and Current Status [R]. California: Naval Air Warfare Center, 2005.
  • 6Wei S,Hu G P,Hu Y,Wang R H.A new method for mispronunciation detection using support vector machine based on pronunciation space models[J].Speech Communication,2009,51(10):896-905.
  • 7Witt S M,Young S J.Phone-level pronunciation scoring and assessment for interactive language learning[J].Speech Communication,2000,30 (2-3):95-108.
  • 8Lo W K,Zhang S,Meng H.Automatic derivation of phonological rules for mispronunciation detection in a computer-assisted pronunciation training system[A].Proceedings of Interspeech[C].JAPAN:ISCA,2010.765-768.
  • 9Qian X,Soong F,Meng H.Discriminative acoustic model for improving mispronunciation detection and diagnosis in computer-aided pronunciation training (CAPT)[A].Proceedings of Interspeech[C].JAPAN:IEEE,2010.757-760.
  • 10Luo D,Yang X,Wang L.Improvement of segmental mispronunciation detection with prior knowledge extracted from large L2 speech corpus[A].Proceedings of Interspeech[C].Italy:ISCA,2011.1593-1596.

共引文献44

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部