期刊文献+

监控场景中的行人属性识别研究综述 被引量:3

Pedestrian Attribute Recognition in Surveillance Scenes:A Survey
下载PDF
导出
摘要 监控场景中的行人属性识别任务旨在为监控场景中视频摄像头捕捉的行人图片预测其属性类别,由于监控场景环境的复杂以及行人属性的细粒度标签,监控场景中的行人属性识别任务极具挑战,受到业界和学界的广泛关注.文中对监控场景中的行人属性识别研究进展进行梳理,首先给出了其概念范畴与任务定义,并与其他相似的属性识别任务进行对比.其次,文中对目前主流的行人属性识别数据库进行了简单介绍,并从图片和标注两个角度分析了不同数据库之间的异同.再次,文中对深度学习时代以来所提出的各种行人属性识别方法进行了归纳和总结,综述了目前行人属性识别领域的研究现状.最后,文中对监控场景中的行人属性识别存在的问题进行了思考和讨论,并对未来的发展趋势进行了展望. The task of pedestrian attribute recognition in surveillance scenes aims to predict the attribute categories of pedestrian images captured by video cameras in surveillance scenes.Due to the complexity of the surveillance scene environment and the fine-grained labeling of pedestrian attributes,the task of pedestrian attribute recognition in surveillance scenes is extremely challenging and has received extensive attention from the industry and academia.This paper reviews the research progress of pedestrian attribute recognition in surveillance scenes.Firstly,we give its conceptual scope and task definition and compare it with similar attribute recognition tasks.Secondly,this paper briefly introduces the mainstream pedestrian attribute recognition datasets and analyzes the similarities and differences between different datasets from picture and annotation perspectives.Again,this paper summarizes and concludes the various pedestrian attribute recognition methods proposed since the era of deep learning and reviews the current research status in pedestrian attribute recognition.Finally,this paper considers and discusses the problems of pedestrian attribute recognition in surveillance scenes and provides an outlook on the future development trend.
作者 贾健 陈晓棠 黄凯奇 JIA Jian;CHEN Xiao-Tang;HUANG Kai-Qi(School of Artificial Intelligence,University of Chinese Academy of Sciences,Beijing 100049;CRISE,Institute of Automation,Chinese Academy of Sciences,Beijing 100190;CAS Center for Excellence in Brain Science and Intelligence Technology,Shanghai 200031)
出处 《计算机学报》 EI CAS CSCD 北大核心 2022年第8期1765-1793,共29页 Chinese Journal of Computers
基金 国家自然科学基金(61721004,61876181) 中国科学院项目(QYZDB-SSW-JSC006) 中国科学院战略性先导科技专项(XDA27000000) 中国科学院青年创新促进会资助.
关键词 计算机视觉 深度学习 行人属性识别 多标签分类 场景理解 computer vision deep learning pedestrian attribute recognition multi-label classification scene understanding
  • 相关文献

参考文献5

二级参考文献390

  • 1田元,王乘,管涛.基于FCM和图割的交互式图像分割方法[J].工程图学学报,2010,31(2):123-127. 被引量:3
  • 2王素玉,沈兰荪.智能视觉监控技术研究进展[J].中国图象图形学报,2007,12(9):1505-1514. 被引量:82
  • 3Marr D.Vision:A Computational Investigation Into the Human Representation and Processing of Visual Information.Cambridge:The MIT Press,2010.
  • 4LeCun Y,Bottou L,Bengio Y,Haffner P.Gradient-based learning applied to document recognition.Proceedings of the IEEE,1998,86(11):2278-2324.
  • 5Ferrari V,Jurie F,Schmid C.From images to shape models for object detection.International Journal of Computer Vision,2009,87(3):284-303.
  • 6Latecki L J,Lakamper R,Eckhardt U.Shape descriptors for non rigid shapes with a single closed contour//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Hilton Head,USA,2000,1:424-429.
  • 7Krizhevsky A.Learning Multiple Layers of Features from Tiny Images[M.S.dissertation].University of Toronto,2009.
  • 8Torralba A,Fergus R,Freeman W T.80 million tiny images:A large dataset for non-parametric object and scene recognition.IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(11):1958-1970.
  • 9Li FebFei,Fergus R,Perona P.Learning generative visual models from few training examples:An incremental Bayesian approach tested on 101 object categories//Proceedings of the Computer Vision and Pattern Recognition (CVPR),Workshop on Generative-Model Based Vision.Washington,USA,2004:178.
  • 10Griffin G,Holub A D,Perona P.The Caltech 256.Caltech Technical Report CNS-TR-2007-001.

共引文献636

同被引文献3

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部