期刊文献+

湍流参数对含管式减涡器盘腔流动特性影响 被引量:1

Influence of turbulence parameters on flow characteristics of cavity with tubed vortex reducer
原文传递
导出
摘要 通过计算卷吸流量对传统湍流参数定义进行修正,并验证了修正后的湍流参数对气流流动的控制情况。结果表明:修正后的湍流参数在不同的管氏减涡器进出口位置和入口预旋下均对盘腔内的气流流场和总压系数取得了很好的控制效果。气流总压系数和实际旋流系数均同时受修正湍流参数和入口旋流系数控制。此外,随同转速下的湍流参数增加,气流保持其径向内流状态的能力增强,需要管氏减涡器抑制其周向旋转的区域减少,使得总压系数最小的最优管氏减涡器长度减短。 This parameter was modified by calculating the entrainment flow rate. The result showed that the modified turbulence parameter had great control effect on flow state and total pressure coefficient. Both the total pressure coefficient and the effective swirl fraction relied on the modified turbulence parameter and the inlet pre-swirl fraction. In addition, the ability of air to maintain radial internal flow state was enhanced with the increase of modified turbulence parameter. Therefore, the area requiring suppress circumferential rotation decreased, which shortened the optimal length of the tubed vortex reducer with the minimum total pressure coefficient.
作者 白阳 罗翔 何建 BAI Yang;LUO Xiang;HE Jian(Research Institute of Aero-Engine,Beihang University,Beijing 102206,China;National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics,School of Energy and Power Engineering,Beihang University,Beijing 102206,China)
出处 《航空动力学报》 EI CAS CSCD 北大核心 2022年第6期1295-1305,共11页 Journal of Aerospace Power
基金 国家重大专项(2017-Ⅲ-0011-0037)。
关键词 管式减涡器 湍流参数 流场结构 总压系数 入口预旋 tubed vortex reducer turbulence parameter flow state total pressure coefficient inlet pre swirl
  • 相关文献

参考文献4

二级参考文献18

  • 1H. H. Cho,C. H. Won,G. Y. Ryu,D. H. Rhee. Local heat transfer characteristics in a single rotating disk and co-rotating disks[J] 2003,Microsystem Technologies(6-7):399~408
  • 2Peitsch D, Stein M, Hein S, et al. Numerical Investigation of Vortex Reducer Flows in the High Pressure Compressor of Mordern Aeroengines[R]. ASME 2002-GT-30674, 2002.
  • 3Gunther A, Uffrecht W, Kaiser E, et al. Experimental Analysis of Varied Vortex Reducer Configurations for the Internal Air System of Jet Engine Gas Turbines[R]. ASME GT2008-50738,2008.
  • 4Chew J W, Snell R J. Prediction of the Pressure Distribu- tion for Radial Inflow between Co-Rotating Discs[R]. ASME 88-GT-61,1988.
  • 5Chew J W, Farthing P R, Owen J M, et al. The Use of Fins to Reduce the Pressure Drop in a Rotating Cavity with Ra- dial Inflow[R]. ASME 88-GT-58,1988.
  • 6Farthing P R, Owen J M. De-Swirled Radial Inflow in a Rotating Cavity[J]. International Journal of Heat and Fluid Flow, 1991,12(1) :65--70.
  • 7Pfitzner M, Waschka W. Development of an Aero Engine Secondary Air System Employing Vortex Reducer[C]//. ICAS congress. Harrogate, 2000.
  • 8Du X Q, Zhu H R, Zhang Z W. Numerical Study on Varied Vortex Reducer Configurations for the Flow Path Optimization in Compressor Cavities[R]. ASME GT2011- 45975,2011.
  • 9黄爱霞,王锁芳.反旋进气盘腔内流动与换热的数值模拟[J].航空动力学报,2008,23(9):1684-1688. 被引量:10
  • 10陈阳春,王锁芳.有去旋进气共转盘腔内流动换热数值模拟[J].航空动力学报,2010,25(8):1746-1752. 被引量:2

共引文献22

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部